ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-06
    Description: The Tibetan Plateau, also known as the “Water Tower of Asia” because of its function as a water storage and supply region, responds dramatically to modern climate changes. Paleoecological shifts inferred from lake sediment archives provide essential insights into past climate changes, and the processes that drove those shifts. This is especially true for studies of lakes in endorheic basins on the Tibetan Plateau, where lake level is regulated predominantly by Monsoon intensity. Such water bodies provide excellent opportunities to reconstruct past changes in humidity. Most paleolimnological investigations of lakes on the Tibetan Plateau, however, have involved the study of a single sediment core, making it difficult to discern between changes caused by local events and those caused by lake-wide or regional processes. Here we present results from a paleolimnological study of Lake Taro Co, a currently closed-basin lake in Central Tibet. We compared a sediment record from the central part of the lake to a record from the near-shore area, and present results of sedimentological and bioindicator (chironomid, diatom, pollen) analyses from both records. Results show three periods of lake-wide ecosystem change (〉 ca. 5250, 5250–2250 and 〈 since about 2250 cal year BP), which reflect a continuous drying trend throughout the Middle and Late Holocene. In addition to this lake-wide trend, we identified two local events in the sediment core from the southeastern, nearshore site. These include (1) a hiatus between 12,400 and 5400 cal year BP and (2) an 1800-year period of distinct paleoenvironmental conditions (5400–3600 cal year BP). We hypothesize that both events were caused by relocation of a river in the southeast sector of the lake’s catchment. We propose that the first relocation caused an erosion event that removed sediment, thereby producing the hiatus. During the following 1800 years, the core site may have been located on the river delta, before another river relocation at 3600 cal year BP established the modern prodelta situation. Our study demonstrates the value of using multiple sediment cores from a lake, to better identify processes that control widespread versus local events.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Fellowships for Young International Scientists http://dx.doi.org/10.13039/501100010895
    Description: NSFC Research Fund for International Young Scientists (CN)
    Description: Deutsche Forschungsgemeinschaft (DFG) (DE)
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:551 ; Monsoon ; Chironomidae ; Diatoms ; Geochemistry ; XRF ; Paleolimnology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: A high-resolution multiproxy geochemical approach was applied to the sediments of Laguna Potrok Aike in an attempt to reconstruct moist and dry periods during the past 16 000 years in southeastern Patagonia. The age–depth model is inferred from AMS 14C dates and tephrochronology, and suggests moist conditions during the Lateglacial and early Holocene (16 000–8700 cal. BP) interrupted by drier conditions before the beginning of the Holocene (13 200–11 400 cal. BP). Data also imply that this period was a major warm phase in southeastern Patagonia and was approximately contemporaneous with the Younger Dryas chronozone in the Northern Hemisphere (12 700–11 500 cal. BP). After 8650 cal. BP a major drought may have caused the lowest lake level of the record. Since 7300 cal. BP, the lake level rose and was variable until the ‘Little Ice Age’, which was the dominant humid period after 8650 cal. BP.
    Keywords: Holocene ; Younger Dryas ; Lateglacial ; `Little Ice Age' ; lacustrine sediments ; geochemistry ; tephrochronology ; multiproxy approach ; Patagonia ; Argentina. ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-22
    Description: We investigated four subaerial (paleo)lacustrine landforms at the north‐eastern shoreline of Schweriner See, north‐eastern Germany. These included two beach ridges, one subaerial nearshore bar and a silting up sequence located close to a fossil cliff, which marks the former maximum extent of Schweriner See. We used luminescence profiling with a SUERC portable OSL device (POSL) on all four sediment sequences in combination with sedimentological investigations such as grain size, loss‐on‐ignition and magnetic susceptibility to provide information on the various formations in a lacustrine depositional environment. The POSL reader was used on pre‐treated polymineral samples to gain an insight into luminescence distribution within the individual sediment sequences, but also among the four sequences. POSL proved valuable to understand depositional processes, which were not visible in lithology or sedimentological parameters. With somewhat larger uncertainty this method provides relative chronologies of the sediment sequences. Additionally, we carried out radiocarbon dating and full optical stimulated luminescence (OSL) dating to establish a chronological framework. OSL ages proved to be more reliable to date beach ridges in this setting than radiocarbon samples, which were severely influenced by sediment reworking. This combined approach of sedimentological analyses, luminescence profiling and absolute age determinations revealed details in depositional processes at Schweriner See which otherwise would have remained undetected. Furthermore, it helped to set these subaerial (paleo)lacustrine landforms in a chronological framework.
    Description: Luminescence profiles were a tremendous help to a) identify additional breaks in sedimentological successions, b) interpret sediment structures in greater detail than it would have been possible from sedimentological and absolute age data (14C and OSL dating) alone and c) understand beach ridge formation at Schweriner See, where traditional sedimentological parameters showed no indications of depositional changes.
    Description: German Research Foundation (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Ministry of Agriculture and the Environment of the Federal State of Mecklenburg‐Western Pomerania
    Description: University of Greifswald/Federal State Mecklenburg‐Western Pomerania: Graduate Scholarship (Landesgraduiertenstipendium) http://dx.doi.org/10.13039/501100018934
    Keywords: ddc:551.3 ; ddc:554.3
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...