ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (7)
Sammlung
Datenquelle
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN8928 , Journal of Climate; 25; 14; 4963-4974
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Recent studies have shown that, in response to a surface warming, the marine tropical low-cloud cover (LCC) as observed by passive-sensor satellites substantially decreases, therefore generating a smaller negative value of the top-of-the-atmosphere (TOA) cloud radiative effect (CRE). Here we study the LCC and CRE interannual changes in response to sea surface temperature (SST) forcings in the GISS model E2 climate model, a developmental version of the GISS model E3 climate model, and in 12 other climate models, as a function of their ability to represent the vertical structure of the cloud response to SST change against 10 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) observations. The more realistic models (those that satisfy the observational constraint) capture the observed interannual LCC change quite well ([delta]LCC]/[delta]SST= -3.491.01%K [negative 1 superscript] vs. [delta]LCC/[delta]SST[subscript obs]= -3.590.28%K[negative 1 superscript]) while the others largely underestimate it ([delta]LCC/[delta]SST= -1.321.28%K[negative 1 superscript]). Consequently, the more realistic models simulate more positive shortwave (SW) feedback ([delta]CRE/[delta]SST=2.601.13Wm[negative 2 superscript] K[negative 1 superscript]) than the less realistic models (CRE/SST=0.872.63Wm2K1), in better agreement with the observations ([delta]CRE/[delta]SST[subscript obs]=30.26Wm[negative 2 superscript] K[negative 1 superscript] ), although slightly underestimated. The ability of the models to represent moist processes within the planetary boundary layer (PBL) and produce persistent stratocumulus (Sc) decks appears crucial to replicating the observed relationship between clouds, radiation and surface temperature. This relationship is different depending on the type of low clouds in the observations. Over stratocumulus regions, cloud-top height increases slightly with SST, accompanied by a large decrease in cloud fraction, whereas over trade cumulus (Cu) regions, cloud fraction decreases everywhere, to a smaller extent.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN66347 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 5; 2813–2832
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC.JA.00310.2012 , Journal of Climate; 24; 15; 3989-4002
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-12
    Beschreibung: The wave propagation in a gaseous disk which is self-gravitating and viscous is studied. Waves are generated by an external disturbance and are maintained in motion among forces due to rotation, self-gravity, and pressure. A linear theory is developed for the general case in which all factors are taken into account. The general solution can be applied to the photostellar disk of the solar nebula and the circumstellar disk of a binary in which the effects of self-gravity and pressure are equally important. The theory confirms in great detail that a long wave is excited at one of the Lindblad resonances gravitationally by the external periodic potential, propagates toward the corotation, is reflected before reaching there at the Q-barrier, and finally propagates in the reverse direction toward and past the Lindblad resonance as a short wave.
    Schlagwort(e): ASTROPHYSICS
    Materialart: Astrophysical Journal, Part 1 (ISSN 0004-637X); 340; 216-240
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN13913 , Journal of Advances in Modeling Earth Systems; 6; 2; 441-477
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-12
    Beschreibung: The present nonlinear theory of spiral density waves in a thin, viscous, self-gravitating gaseous disk views the waves as generated near the Lindblad resonance by periodic disturbances through an excitation mechanism. The suggestion of Yuan (1984), that either a minor oval distortion or an uneven distribution of mass in the center can excite a spiral density wave whose radial velocity and mass concentration are in excellent agreement with observations of the 3 kpc arm of the Galaxy, is confirmed. Reliable results are obtained for nonlinear density waves either in a gaseous disk or in the gas components of a galactic disk.
    Schlagwort(e): ASTROPHYSICS
    Materialart: Astrophysical Journal, Part 1 (ISSN 0004-637X); 376; 104-114
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-12
    Beschreibung: Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...