ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 11 (1994), S. 1657-1662 
    ISSN: 1573-904X
    Keywords: transdermal drug delivery ; electroporation ; metoprolol ; skin permeation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Electroporation, i.e., the creation of transient “pores” in lipid membranes leading to increased permeability, could be used to promote transdermal drug delivery. We have evaluated metoprolol permeation through full thickness hairless rat skin in vitro following electroporation with an exponentially decaying pulse. Application of electric pulses increased metoprolol permeation as compared to diffusion through untreated skin. Raising the number of twin pulses (300 V, 3 ms; followed after 1 s by 100 V, 620 ms) from 1 to 20 increased drug transport. Single pulse (100 V, 620 ms) was as effective as twin pulse application (2200 V, 1100 V or 300 V, 3 ms; followed after 1 s by 100 V, 620 ms). In order to investigate the effect of pulse voltage on metoprolol permeation, 5 single pulses (each separated by 1 min) were applied at varying voltages from 24 to 450 V (pulse time 620 ms). A linear correlation between pulse voltage and cumulative metoprolol transported after 4 h suggested that voltage controls the quantity of drug delivered. Then, the effect of pulse time on metoprolol permeation was studied by varying pulse duration of 5 single 100 V pulses from 80 to 710 ms (each pulse also separated by 1 min). Cumulative metoprolol transported after 4 h increased linearly with the pulse time. Therefore, pulse time was also a control factor of the quantity of drug delivered but to a lesser extent than the voltage at least at 100 V. The mechanisms behind improved transdermal drug delivery by electroporation involved reversible increased skin permeability, electrophoretic movement of drug into the skin during pulse application, and drug release from the skin reservoir formed by electroporation. Thus, electroporation did occur as shown by the increased transdermal permeation, on indicator of structural skin changes and their reversibility. Electroporation has potential for enhancing transdermal drug delivery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...