ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • poly(ethylene naphthalene-2,6-dicarboxylate)  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 691-697 
    ISSN: 0887-6266
    Keywords: poly(ethylene naphthalene-2,6-dicarboxylate) ; PEN ; CP/MAS 13C NMR spectra ; phase structure ; molecular dynamics ; 1H NMR wide-line spectra ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Amorphous (1) and semicrystalline (2) samples of poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) have been investigated by cross-polarization/magic angle spinning (CP/MAS) 13C NMR at 26°C (1 and 2), 100°C (1) and 120°C (2) in order to study the phase structure and the local motion of polymer chain segments at temperatures below and close to Tg (120°C). The lineshape of the ethylene unit 13C signal in sample 2 is consistent with the presence of two components which were assigned to trans and gauche conformations. The first component arises mainly from the crystalline regions and the second one from the amorphous part. Cross-polarization curves were traced by changing the contact time between carbon and proton reservoirs. TCH (cross relaxation time) and proton T1p (spin-lattice relaxation time in the rotating frame) values were obtained as best fit parameters by fitting calculated curves to the experimental data. All 13C NMR data are consistent with the presence of highly rigid ethylene units in both semicrystalline and amorphous samples within the temperature range (T) investigated. This result is in disagreement with the 1H NMR wide line spectra which showed a noticeable narrowing of the linewidth with increasing temperature in the same range, hence indicating a great mobility of the chain segments. To account for this discrepancy a qualitative model based on the existence of two distinct dynamic regions, one where motion is highly restricted and the other one where large reorientations of ethylene group torsional angles take place, is suggested. The NMR results led to the conclusion that three structural phases are present in PEN: crystalline, very rigid amorphous, and very mobile amorphous. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...