ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Biogeochemistry 32 (1996), S. 93-113 
    ISSN: 1573-515X
    Schlagwort(e): alpine ; biogeochemistry ; nitrogen ; nitrogen saturation ; snowmelt ; soils
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Notizen: Abstract Experiments were conducted during 1993 at Niwot Ridge in the Colorado Front Range to determine if the insulating effect of winter snow cover allows soil microbial activity to significantly affect nitrogen inputs and outputs in alpine systems. Soil surface temperatures under seasonal snowpacks warmed from −14 °C in January to 0 °C by May 4th. Snowmelt began in mid-May and the sites were snow free by mid June. Heterotrophic microbial activity in snow-covered soils, measured as C02 production, was first identified on March 4, 1993. Net C02 flux increased from 55 mg CO2-C m−2 day−1 in early March to greater than 824 mg CO2-C m-2 day−1 by the middle of May. Carbon dioxide production decreased in late May as soils became saturated during snowmelt. Soil inorganic N concentrations increased before snowmelt, peaking between 101 and 276 mg kg−1 soil in May, and then decreasing as soils became saturated with melt water. Net N mineralization for the period of March 3 to May 4 ranged from 2.23 to 6.63 g N m−2, and were approximately two orders of magnitude greater than snowmelt inputs of 50.4 mg N m−2 for NH4 + and 97.2 mg N m−2 for NO3 −. Both NO3 − and NH4 + concentrations remained at or below detection limits in surface water during snowmelt, indicating the only export of inorganic N from the system was through gaseous losses. Nitrous oxide production under snow was first observed in early April. Production increased as soils warned, peaking at 75 μg N2O-N m−2 day−1 in soils saturated with melt water one week before the sites were snow free. These data suggest that microbial activity in snow-covered soils may play a key role in alpine N cycling before plants become active.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...