ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digital image processing  (4)
  • handwork time  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Queueing systems 4 (1989), S. 339-349 
    ISSN: 1572-9443
    Schlagwort(e): Machining time ; handwork time ; overlapping service time ; Markov chain ; equilibrium equations ; nonsaturation condition ; waiting time
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Informatik
    Notizen: Abstract This paper studies a priority queueing model of a production system in which one operator serves two types of units with overlapping service times. The two types of units arrive in independent Poisson processes. There are two machines in the system. Units of type 1 receive two consecutive types of services at machine #1: the handwork performed by the operator and the automatic machining without the operator. Units of type 2 receive only the handwork performed by the operator at machine #2. The operator attends the two machines according to a strict-priority discipline which always gives units of type 2 higher priority than units of type 1. At each machine the handwork times have a general distribution, and at machine #1 the machining times have an exponential distribution. The Laplace-Stieltjes transform of the queue-size distributions and the waiting time distributions for a stationary process are obtained.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0741-0581
    Schlagwort(e): STEM ; On-line computer system ; Digital image processing ; Unstained biological specimen ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: Recently, the reliability of field-emission electron guns has increased. In addition, the cost of computer systems for on-line processing has dropped. Hence, we should now consider the use of scanning transmission electron microscopy (STEM) for routine work, especially, in the field of biology where one may expect to utilize digital image processing techniques.An STEM has been constructed, without disturbing the original functions, by converting a commercial scanning electron microscope equipped with a fieldemission gun. The STEM is generally operated at accelerating voltage 30 kV, focal length 7.5 mm, and beam current 1-2 × 10-10 A. Several improvements have been incorporated for removing the effects of vibration, contamination, and stray magnetic fields. Also, an adjustable detector aperture was utilized. The modified instrument was connected to an on-line digital image processing system for utilizing the information obtained from STEM images. The advantages of the modified system were studied from various viewpoints.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 3 (1986), S. 159-167 
    ISSN: 0741-0581
    Schlagwort(e): Electron probe beam diameter ; Digital image processing ; Online digital computer ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: A method for the measurement of electron probe beam diameter by digital image processing has recently been published. The purpose of the present report is to describe the development of an automatic system for beam diameter measurement. To complete this system, a method based on a theory which combines automation and high-resolution conditions is proposed. In practice, the beam diameter is measured from the STEM image of a crystalline hole in a gold thin film, utilizing an on-line computer system equipped with newly developed digital processing programs linked to a SEM in the transmission mode. The functions of the programs include statistical processing, matching, noise removal, interpolation, selection, and rotation. By combining these functions, the scanning beam diameter is accurately measured, in spite of difficulties, under most electron microscope operating conditions. The user simply appoints the edge included in the STEM image.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 5 (1987), S. 51-58 
    ISSN: 0741-0581
    Schlagwort(e): STEM image ; SE yield ; Digital image processing ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: An inexpensive, efficient device that supplies a transmission mode to the conventional SEM has been developed. The transmitted electrons strike a metal plate, and these generate secondary electrons that are proportional to the quantity of the transmitted electrons. The generated electrons are collected by the secondary electron detector. Hence, the performance of this device is influenced by the number of secondary electrons generated in the metal plate. In order to construct a device that can attain the best transmitted electron image, the signal-to-noise ratio of images, obtained from various trial devices, were measured by a newly-developed digital image processing program. When the material and shape of the device are selected, to produce high-secondary emission, the efficiency of the device compares with that of a relatively expensive standard detector system (scintillator detector).
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 2 (1985), S. 463-469 
    ISSN: 0741-0581
    Schlagwort(e): Electron probe beam diameter ; Digital image processing ; Acutance ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: The present report illustrates a computerized method for precise measurement of the diameter of an electron beam. The value of this measurement extends beyond simply providing an accurate estimate of resolution. Other salient areas which will benefit include quantitative X-ray microanalysis, energy loss spectroscopy, diffraction studies, and electron beam lithography. The biological sciences as well as the material sciences will gain enormously from improved accuracy in measurement (control) of beam diameter. It is anticipated that most or all of the mathematical manipulations outlined in this paper will be incorporated into digital electronic packages which will perform the functions automatically for setting the electron beam diameter to the scientist's choice. The purpose of the present report is to indicate some of the principles involved so that as electron microscopy becomes more computerized and automated, the user will have some understanding of what the electronics are doing rather than simply depressing a button or two and ignoring the power of what resides within the walls of the instrument.The performance of a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM) is roughly determined by the incident electron probe beam size (diameter) involving a sufficient electron current. In the present paper, the diameter of an ultrafine electron beam is measured indirectly from the information given by the blurring of an edge in a STEM or a SEM image of a crystalline specimen with fine, sharp edges. The obtained data were processed by digital image processing methods which give an accurate value of the beam diameter. For confirming the validity of this method, a suitable simulation based on the convolution theorem was performed. By using this measurement, we could measure the diameter of an ultrafine electron beam down to 2 nm, which could not be measured easily by previous techniques.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...