ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0581
    Keywords: Sea Beam bathymetry ; renavigation ; gridded map ; East Pacific Rise
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present a gridded Sea Beam bathymetric map of a 5100 km2 area between 9° and 10° N on the East Pacific Rise (included as a color separate accompanying this issue). The raw bathymetric data are renavigated using a technique for calculating smooth adjustments to navigation that incorporates absolute constraints from satellite fixes and acoustically-located explosive shots, and relative constraints from the misfit of bathymetric data at ship track crossovers. We describe a back-projection technique for gridding the bathymetric data that incorporates an approximation for the power distribution within a narrow-beam echo sounding system and accounts for the variable uncertainties associated with multi-beam data. The nodal separation of the resulting map is ~ 80 m in both latitude and longitude, and the sampling of grid points within a 60 × 85 km2 region is in excess of 99%. A formal analysis of variance is applied to the gridded bathymetric data. For each grid point, the difference between the variance of data from within a track versus data from between tracks provides an upper bound on the magnitude of bathymetric misfits arising from navigational errors. The renavigation results in an 88% reduction in this quantity. We also examine the effects of renavigation on the misfit of magnetic and gravity data at crossovers and compare our results with other bathymetric surveys. A striking feature of the final bathymetric map is the sinuous regional shape of the rise axis. In plan view, the local trend of morphology sometimes varies by up to 15° and the distances separating changes in morphological trend are about 10–20 km. In cross section the slopes of the rise flanks are notably asymmetric and show some correlation with the offset of the axial magmatic system as detected by seismic methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...