ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 441-453 
    ISSN: 0887-624X
    Keywords: emulsion polymerization ; molecular weight distribution ; mathematical model ; Monte Carlo method ; computer simulation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A Monte Carlo simulation model for the kinetics of emulsion polymerization is proposed. In the present model, the formation of each polymer molecule is simulated by the use of only a couple of probability functions; therefore, the calculation can be handled well even on personal computers. It is straightforward to account for virtually any kinetic event, such as the desorption of oligomeric radicals and chain length dependence of kinetic parameters, and as a consequence very detailed information such as the full distributions of the dead polymer molecular weights and the macroradicals among various polymer particles can be obtained. When bimolecular terminations are the dominant chain stoppage mechanism, the instantaneous molecular weight distribution (produced in a very small time interval) becomes broader than that for homogeneous polymerizations due to a higher possibility that short and long polymer radicals react with each other if bimolecular reactions are fast enough. The increase in the polydispersity of the MWD is fairly large, especially when bimolecular termination by disproportionation is significant; however, the gel permeation chromatography (GPC) may not be a suitable analytical technique to detect such broadening since oligomeric peaks may not be observed in the elution curve. The present simulation method provides greater insight into the complicated phenomena of emulsion polymerizations. © 1995 John Wiley & Sons, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1515-1532 
    ISSN: 0887-6266
    Keywords: emulsion polymerization ; molecular weight distribution ; chain transfer to polymer ; branched polymers ; Monte Carlo method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A modelistic study of the molecular weight distribution (MWD) formed in emulsion polymerization that involves chain transfer to polymer is conducted, by focusing our attention to the effect of very small reaction volume on the formed MWD. In emulsion polymerization, a polymer radical that causes polymer transfer reaction must choose the partner only within the same particle, which makes the expected size of the polymer molecule to be chosen smaller compared with the corresponding polymerization system that involves an infinitely large number of polymeric species. The usual assumption for homogeneous polymerization that the rate of chain transfer to a particular polymer molecule is proportional to its chain length cannot be used, except when branching frequency is low and particle size is large enough. This fact invalidates the direct use of models developed for homogeneous nonlinear polymerizations to emulsion polymerizations. Model equations that could be used to assess the significance of the limited space effects on the MWD under a given polymerization condition are also proposed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1515-1532, 1997
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...