ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:560  (2)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2024-02-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉ABSTRACT〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The Permian–Triassic and Triassic–Jurassic critical intervals are among the most significant ecological upheavals in the Phanerozoic. Both evolutionary junctures are characterized by environmental deterioration associated with a marked biodiversity decline. In this study, Permian–Triassic and Triassic–Jurassic boundary sections from South China and the Northern Calcareous Alps were investigated. In order to reconstruct the interplay between biotic and abiotic processes, a multifaceted approach that included optical microscopy, X‐ray diffraction, Raman spectroscopy, stable carbon isotopes and lipid biomarkers was employed. The lower parts of these two sections are similar as both consist of limestone with abundant fossils of eukaryotic organisms. However, the Permian–Triassic record is dominated by dasyclad green algae and fusulinid foraminifera, while the Triassic–Jurassic record is typified by corals and coralline sponges. Moving upward, both sections consist mainly of micrite and marl. Concerning the Permian–Triassic section, it transits to volcanic ash intercalated by a distinct limestone bed with abundant calcispheres (tentatively attributed to ancestors of dinoflagellates). The Triassic–Jurassic section does not provide direct evidence for volcanic activity, but also becomes rich in calcisphere‐type cysts towards the top. Additionally, the section preserves abundant 4‐methyl sterenes (diagnostic for dinoflagellates) and C〈sub〉37–39〈/sub〉 〈italic toggle="no"〉n〈/italic〉‐alkanes (indicative for haptophytes). Hence, both critical intervals were associated with marked blooms of (ancestral) dinoflagellates and haptophytes (for example, coccolithophorids). These blooms were followed by ecological lag‐phases, as indicated by low carbonate contents and scarce fossils which only increased further up the sections. For both critical intervals, it is commonly assumed that the formation of voluminous volcanic provinces (Siberian Traps and Central Atlantic Magmatic Province, respectively), as well as associated processes (for example, burning of organic‐rich sediments such as coal), resulted in ecological devastation. However, results suggest that volcanism also had a positive effect on certain planktonic primary producers such as dinoflagellates and haptophytes, perhaps by delivering essential nutrients.〈/p〉
    Description: China Council Scholarship
    Description: Teach@Tübingen Fellowship
    Keywords: ddc:560 ; Calcispheres ; dinoflagellates ; haptophytes ; lipid biomarkers ; mass extinctions ; microfacies ; stable carbon isotopes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Selbstverlag Fachbereich Geowissenschaften, Freie Universität Berlin
    In:  Herausgeberexemplar
    Publication Date: 2024-03-22
    Description: Porifera mit sekundären, kalkigen Skelettelementen werden, mit Ausnahme der Hexactinellida, in allen bekannten höheren Kategorien des Taxons Porifera beobachtet. Diese Gruppen werden als "Sclerospongia, coralline Spongien, Pharetronida, Sphinctozoa, Chaetetida (pars) und Stromatoporoidea (pars)" bezeichnet. Diese Skelettmorphotypen sind stammesgeschichtlich mehrfach entstanden. Die Fähigkeit kalkige Exoskelette zu bilden wird auf eine Calcium Detoxifikation des Zytoplasmas zurückgeführt, die eine vitale Notwendigkeit der Zellen darstellt. Dieses Merkmal wird als Symplesiomorphie der Pinacophora interpretiert und gehört in dessen Grundmuster Dieses kryptotypische Merkmal wird durch Adaption/Selektion bei einzelnen untergeordneten Taxa in Autapomorphien umgewandelt. Als wichtige Selektionsfaktoren bei der Entwicklung und Einnischung coralliner Spongien werden die rapide Entwicklung der hermatypen Scleractinia in der Co-Evolution mit den corallinen Rotalgen ab der Mittelkreide, die Änderungen der Mg:Ca-Verhältnisse im phanerozoischen Meerwasser (SANoniRG-Zyklen) und die vermutlichen Soda-ozeanischen Bedingungen des präkambrischen Ozeans angesehen (z.B. Notwendigkeit einer Ca- Detoxifikation). Weiter untersucht wurden Mikro- und Ultrastrukturen der Basalskelette, ihre geo- und isotopenchemischen und biologischen Charakteristika sowie ihre Bildung und Funktion. Diese Faktoren unterstreichen den urprünglichen und wenig abgeleiteten Charakter dieser Skelette. Die in der vorliegenden Arbeit untersuchten Spongien mit einem sekundären, kalkigen Basalskelett konnten z.T. rezenten und fossilen taxonomischen Einheiten der Porifera zugeordnet werden. Die phylogenetische und taxonomische Analyse erfolgte unter Einbeziehung fossiler Taxa nach den Regeln der phylogenetischen Systematik. Ein neues phylogenetisch/taxonomisches Modell für die nicht hexactinelliden Porifera (Pinacophora), unter besonderer Berücksichtigung der Taxa mit sekundären Kalkskeletten, wird vorgestellt. Demospongiae, Calcarea und Homosclerophorida werden dabei als Monophylum aufgefaßt (Pinacophora). Die Hexactinellida werden als Adelphotaxon dieses Monophylums aufgefaßt.
    Description: Porifera with secondary calcareous skeletal elements are observed within all main taxa of the Pinacophora (Calcarea/Demospongiae) except the Homosclerophorida. Within the Hexactinellida, taxa with calcareous skeletons are missing. The calcified sponges are normally called "Sclerospongia, coralline sponges, Pharetronida, Sphinctozoa, Chaetetida, and Stromatoporoida" These different skeletal types are developed several times independently. The ability to form secondary calcareous skeletons is linked with the cytoplasmatic Ca2+ control and Ca2+ detoxification which is a vital effect of the cell. The secondary calcium salt skeletons are one possibility to eliminate the Ca-surplus, and the calcareous skeletons thus are to be regarded as a metabolic end product. The ability to form a calcareous skeleton is interpreted as a symplesiomorphy within the Pinacophora and is part of their basic pattern. It is a typical cryptotypic character which is developed in certain pinacophoran taxa as autoapomorphies. The probable Soda-oceanic conditions of the Praecambrian seas and the turning point in the late Proterozoic to a Halite ocean ("Cambrian Explosion"), as well the varing CO2 conditions (Greenhause/Icehouse cycles) in combination with different Mg:Ca ratios within Phanerozoic oceans are probably the main controlling factors of selection and adaptation of the calcareous sponge skeletons. The different calcareous skeletal types within the sponges were examined in respect of their micro- and ultrastructures, geochemisty, isotope geochemistry, and biogeochemistry. The coralline sponges were phylogenetically analysed by means of the consequent phylogenetic systematic methodology The fossil record of these sponges was subsequently integrated in the phylogenetic hypothesis. The groups Demospongiae, Calcarea, and Homoscleromoipha are recognized to constitute the well established monophylum (Pinacophora). The taxon Hexactinellida is the adelphotaxon of the Pinacophora.
    Description: research
    Description: DFG, SUB Göttingen
    Keywords: ddc:560 ; Sclerospongiae ; Phylogenetische Systematik
    Language: German
    Type: doc-type:book
    Format: 508
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...