ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-06-05
    Beschreibung: A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors.
    Beschreibung: Horizon 2020 http://dx.doi.org/10.13039/501100007601
    Beschreibung: Projekt DEAL
    Schlagwort(e): ddc:523 ; Planetary exploration ; Planetary seismology ; Librations ; Tides ; 6DoF sensors
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-06-09
    Beschreibung: Microzonation is one of the essential tools in seismology to mitigate earthquake damage by estimating the near-surface velocity structure and developing land usage plans and intelligent building design. The number of microzonation studies increased in the last few years as induced seismicity becomes more relevant, even in low-risk areas. While of vital importance, especially in densely populated cities, most of the traditional techniques suffer from different shortcomings. The microzonation technique presented here tries to reduce the existing ambiguity of the inversion results by the combination of single-station six-component (6C) measurements, including three translational and three rotational motions, and more traditional H/V techniques. By applying this new technique to a microzonation study in the downtown area of Munich (Germany) using an iXblue blueSeis-3A rotational motion sensor together with a Nanometrics Trillium Compact seismometer, we were able to estimate Love and Rayleigh wave dispersion curves. These curves together with H/V spectral ratios are then inverted to obtain P- and S-wave velocity profiles of the upper 100 m. In addition, there is a good correlation between the estimated velocity models and borehole-derived lithology, indicating the potential of this single-station microzonation approach.
    Beschreibung: European Research Council https://doi.org/10.13039/501100000781
    Beschreibung: Bundesministerium für Wirtschaft und Energie https://doi.org/10.13039/501100006360
    Schlagwort(e): ddc:551.22 ; Microzonation ; Rotational seismology ; Ambient noise
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-03-30
    Beschreibung: The estimation of crustal structure and thickness is essential in understanding the formation and evolution of terrestrial planets. Initial planetary missions with seismic instrumentation on board face the additional challenge of dealing with seismic activity levels that are only poorly constrained a priori. For example, the lack of plate tectonics on Mars leads to low seismicity, which could, in turn, hinder the application of many terrestrial data analysis techniques. Here we propose using a joint inversion of receiver functions and apparent incidence angles, which contain information on absolute S‐wave velocities of the subsurface. Since receiver function inversions suffer from a velocity depth trade‐off, we in addition exploit a simple relation that defines apparent S‐wave velocity as a function of observed apparent P‐wave incidence angles to constrain the parameter space. We then use the Neighborhood Algorithm for the inversion of a suitable joint objective function. The resulting ensemble of models is then used to derive uncertainty estimates for each model parameter. In preparation for the analysis of data from the InSight mission, we show the application of our proposed method on Mars synthetics and sparse terrestrial data sets from different geological settings using both single and multiple events. We use information‐theoretic statistical tests as model selection criteria and discuss their relevance and implications in a seismological framework.
    Beschreibung: Key Points: We propose the joint inversion of receiver functions and apparent S‐wave velocity curves to estimate crustal thickness. Using the Neighborhood Algorithm, we show how a full uncertainty estimate can be computed from an ensemble solution. The method is applied to Martian synthetics and terrestrial data sets comprising single and multiple events.
    Beschreibung: IMPRS
    Beschreibung: Emeritus group
    Beschreibung: DLR German Space Agency
    Beschreibung: http://www.orfeus-eu.org/data/eida/
    Beschreibung: http://instaseis.ethz.ch/marssynthetics/
    Schlagwort(e): ddc:622.1592 ; ddc:523
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...