ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0794
    Keywords: MHD ; comets ; Hale-Bopp ; cometary x-rays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract MHD simulation results of the interaction of the expanding atmosphere of comet Hale-Bopp with the magnetized solar wind are presented. At the upstream boundary a supersonic and superalfvénic solar wind enters into the simulation box 25 million km upstream of the nucleus. The solar wind is continuously mass loaded with cometary ions originating from the nucleus. The effects of photoionization, recombination and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our MUSCL-type upwind numerical technique, MAUS-MHD (Multiscale Adaptive Upwind Scheme for MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. Detailed simulation results for the plasma environment of comet Hale-Bopp for slow and fast solar wind conditions are presented. We also calculate synthetic H2O+, CO+ and soft x-ray images for observing conditions on April 11, 1997.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
    Keywords: Solar Physics
    Type: Paper 95JE03363 , Journal of Geophysical Research (ISSN 0148-0227); 101; E2; 4547-4556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...