ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-06
    Description: Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non‐linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed‐forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: (a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; (b) high optically thin cirrus‐like clouds are separated from low optically thick cumulus clouds; and (c) shallow convective processes are associated with large‐scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub‐grid‐scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties.
    Description: Plain Language Summary: Deep neural nets are hard to interpret due to their hundred thousand or million trainable parameters without further postprocessing. We demonstrate in this paper the usefulness of a network type that is designed to drastically reduce this high dimensional information in a lower‐dimensional space to enhance the interpretability of predictions compared to regular deep neural nets. Our approach is, on the one hand, able to reproduce small‐scale cloud related processes in the atmosphere learned from a physical model that simulates these processes skillfully. On the other hand, our network allows us to identify key features of different cloud types in the lower‐dimensional space. Additionally, the lower‐order manifold separates tropical samples from polar ones with a remarkable skill. Overall, our approach has the potential to boost our understanding of various complex processes in Earth System science.
    Description: Key Points: A Variational Encoder Decoder (VED) can predict sub‐grid‐scale thermodynamics from the coarse‐scale climate state. The VED's latent space can distinguish convective regimes, including shallow/deep/no convection. The VED's latent space reveals the main sources of convective predictability at different latitudes.
    Description: EC ERC HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180
    Description: Columbia sub‐award 1
    Description: Advanced Research Projects Agency - Energy http://dx.doi.org/10.13039/100006133
    Description: Deutsches Klimarechenzentrum http://dx.doi.org/10.13039/100018730
    Description: National Science Foundation Science and Technology Center Learning the Earth with Artificial intelligence and Physics
    Keywords: ddc:551.5 ; machine learning ; generative deep learning ; convection ; parameterization ; explainable artificial intelligence ; dimensionality reduction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Extreme temperature events have traditionally been detected assuming a unimodal distribution of temperature data. We found that surface temperature data can be described more accurately with a multimodal rather than a unimodal distribution. Here, we applied Gaussian Mixture Models (GMM) to daily near‐surface maximum air temperature data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations for 46 land regions defined by the Intergovernmental Panel on Climate Change. Using the multimodal distribution, we found that temperature extremes, defined based on daily data in the warmest mode of the GMM distributions, are getting more frequent in all regions. Globally, a 10‐year extreme temperature event relative to 1985–2014 conditions will occur 13.6 times more frequently in the future under 3.0°C of global warming levels (GWL). The frequency increase can be even higher in tropical regions, such that 10‐year extreme temperature events will occur almost twice a week. Additionally, we analyzed the change in future temperature distributions under different GWL and found that the hot temperatures are increasing faster than cold temperatures in low latitudes, while the cold temperatures are increasing faster than the hot temperatures in high latitudes. The smallest changes in temperature distribution can be found in tropical regions, where the annual temperature range is small. Our method captures the differences in geographical regions and shows that the frequency of extreme events will be even higher than reported in previous studies.〈/p〉
    Description: Plain Language Summary: Extreme temperature events are unusual weather conditions with exceptionally low or high temperatures. Traditionally, the temperature range was determined by assuming a single distribution, which describes the frequency of temperatures at a given climate using their mean and variability. This single distribution was then used to detect extreme weather events. In this study, we found that temperature data from reanalyses and climate models can be more accurately described using a mixture of multiple Gaussian distributions. We used the information from this mixture of Gaussians to determine the cold and hot extremes of the distributions. We analyzed their change in a future climate and found that hot temperature extremes are getting more frequent in all analyzed regions at a rate that is even higher than found in previous studies. For example, a global 10‐year event will occur 13.6 times more frequently under 3.0°C of global warming. Furthermore, our results show that the temperatures of hot days will increase faster than the temperature of cold days in equatorial regions, while the opposite will occur in polar regions. Extreme hot temperatures will be the new normal in highly populated regions such as the Mediterranean basin.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Extreme temperature events are detected with Gaussian Mixture Models to follow a multimodal rather than a unimodal distribution〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉10‐year temperature extremes will occur 13.6 times more frequently under 3.0°C future warming〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Colder days are getting warmer faster than hotter days in high latitudes, whereas it is the opposite for many regions in low latitudes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://github.com/EyringMLClimateGroup/pacal23jgr_GaussianMixtureModels_Extremes
    Description: https://doi.org/10.5281/zenodo.3401363
    Keywords: ddc:551.5 ; extreme events ; Gaussian mixture models ; daily maximum temperatures ; return periods ; bimodal distributions ; multimodal distributions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...