ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-879X
    Keywords: Fe‐ZSM‐5 ; carbon monoxide ; FTIR spectroscopy ; nitrates ; nitrogen monoxide ; selective catalytic reduction ; adsorption ; zeolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Adsorption of NO on Fe‐ZSM‐5 leads to formation of Fen+–NO (n = 2 or 3) species (1880 cm-1), Fe2+(NO)2 complexes (1920 and 1835 cm-1) and NO+ (2133 cm-1). Water strongly suppresses the formation of NO+ and Fen+(NO)2 and more slightly the formation of Fen+ –NO. Introduction of oxygen to NO converts the nitrosyls into surface nitrates (1620 and 1575 cm-1) and this process is almost unaffected by water. The nitrates are thermally stable up to ca. 300°C, but readily interact with propane at 200°C, thus forming surface C–H–N–O deposit (bands in the 1700–1300 cm-1 region). Here again, water does not hinder the process. The C–H–N–O deposit is relatively inert (it does not interact with NO or NO + O2 at ambient temperature) but, at temperatures higher than 250 °C, it is decomposed to NCO- species (bands at 2215 (Fe–NCO) and 2256 cm-1 (Al–NCO)). In the presence of water, however, the Fe–NCO species only are formed. At ambient temperature the NCO- species are inert towards NO and O2, but easily react with a NO + O2 mixture. The mechanism of the selective catalytic reduction of nitrogen oxides on Fe‐ZSM‐5 and the effect of water on the process are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...