ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Calcified tissue international 55 (1994), S. 180-189 
    ISSN: 1432-0827
    Schlagwort(e): Collagen ; Crystal habit ; Ultrastructure ; Turkey leg tendon
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin , Physik
    Notizen: Abstract Transmission electron micrographs of fully mineralized turkey leg tendon in cross-section show the ultrastructure to be more complex than has been previously described. The mineral is divided into two regions. Needlelike-appearing crystallites fill the extrafibrillar volume whereas only platelike crystallites are found within the fibrils. When the speciment is tilted through a large angle, some of the needlelike-appearing crystallites are replaced by platelets, suggesting that the needlelike crystallites are platelets viewed on edge. If so, these platelets have their broad face roughly parallel to the fibril surface and thereby the fibril axis, where the intrafibrillar platelets are steeply inclined to the fibril axis. The projection of the intrafibrillar platelets is perpendicular to the fibril axis. The extrafibrillar volume is at least 60% of the total, the fibrils occupying 40%. More of the mineral appears to be extrafibrillar than within the fibrils. Micrographs of the mineralized tendon in thickness show both needlelike-appearing and platelet crystallites. Stereoscopic views show that the needlelike-appearing crystallites do not have a preferred orientation. From the two-dimensional Fourier transform of a selected area of the cross-sectional image, the platelike crystallites have an average dimension of 58 nm. The needlelike-appearing crystallites have an average thickness of 7 nm. The maximum length is at least 90 nm. Atomic force microscopy (AFM) of unstained, unmineralized turkey leg tendon shows collagen fibrils very much like shadow replicas of collagen in electron micrographs. AFM images of the mineralized tendon show only an occasional fibril. Mineral crystallites are not visible. Because the collagen is within the fibrils, the extrafibrillar mineral must be embedded in noncollagenous organic matter. When the tissue is demineralized, the collagen fibrils are exposed. The structure as revealed by the two modalities is a composite material in which each component is itself a composite. Determination of the properties of the mineralized tendon from the properties of its elements is more difficult than considering the tendon to be just mineral-filled collagen.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Calcified tissue international 59 (1996), S. 474-479 
    ISSN: 1432-0827
    Schlagwort(e): Bone ; Apatite ; Collagen ; Demineralization ; Ultrastructure
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin , Physik
    Notizen: Abstract A technique to correlate the ultrastructural distribution of mineral with its organic material in identical sections of mineralized turkey leg tendon (MTLT) and human bone was developed. Osmium or ethanol fixed tissues were processed for transmission electron microscopy (TEM). The mineralized tissues were photographed at high, intermediate, and low magnifications, making note of section features such as fibril geometry, colloidal gold distribution, or section artifacts for subsequent specimen realignment after demineralization. The specimen holder was removed from the microscope, the tissue section demineralized in situ with a drop of 1 N HCl, then stained with 2% aqueous vanadyl sulfate. The specimen holder was reinserted into the microscope, realigned with the aid of the section features previously noted, and rephotographed at identical magnification used for the mineralized sections. A one to one correspondence was apparent between the mineral and its demineralized crystal “ghost” in both MTLT and bone. The fine structural periodic banding seen in unmineralized collagen was not observed in areas that were fully mineralized before demineralization, indicating that the axial arrangement of the collagen molecules is altered significantly during mineralization. Regions that had contained extrafibrillar crystallites stained more intensely than the intrafibrillar regions, indicating that the noncollagenous material surrounded the collagen fibrils. The methodology described here may have utility in determining the spatial distribution of the noncollagenous proteins in bone.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...