ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 153 (1990), S. 392-398 
    ISSN: 1432-072X
    Schlagwort(e): Thiobacillus acidophilus ; Acidophiles ; Maintenance ; Growth yields ; Organic acids
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 μM pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol−1 and 0.10 mmol · g−1 · h−1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 154 (1990), S. 576-583 
    ISSN: 1432-072X
    Schlagwort(e): Thiobacillus acidophilus ; Acidophiles ; Mixotrophic growth ; Chemostat cultures ; Formate metabolism ; Formaldehyde metabolism
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 μM, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...