ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.
    Keywords: Space Radiation
    Type: 11th International Congress on Radiation Res.; Jul 11, 2000 - Jul 15, 2000; Dublin; Ireland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (〈60 d), and for long-term missions (〉60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.
    Keywords: Space Radiation
    Type: 1st Space Exploration Conference: Continuing the Voyages of Discovery; Jan 30, 2005 - Feb 01, 2005; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...