ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2018-06-11
    Beschreibung: Precise GPS measurements of elastic relative site displacements due to surface mass loading offer important constraints on global surface mass transport. We investigate effects of site distribution and aliasing by higher-degree (n greater than or equal 2) loading terms on inversion of GPS data for n = 1 load coefficients and geocenter motion. Covariance and simulation analyses are conducted to assess the sensitivity of the inversion to aliasing and mismodeling errors and possible uncertainties in the n = 1 load coefficient determination. We found that the use of center-of-figure approximation in the inverse formulation could cause 10- 15% errors in the inverted load coefficients. n = 1 load estimates may be contaminated significantly by unknown higher-degree terms, depending on the load scenario and the GPS site distribution. The uncertainty in n = 1 zonal load estimate is at the level of 80 - 95% for two load scenarios.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: Geophysical Research Letters (ISSN 0094-8276); Volume 29; No. 24
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: AAS-15-042 , NF1676L-20681 , Annual Guidance and Control Conference; Jan 30, 2015 - Feb 04, 2015; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-17
    Beschreibung: An expanding interest in mission design strategies that exploit libration point regions, demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. Linear control strategies have been developed for station-keeping. However, their region of stability is bounded by the assumptions required for linearizing the governing equations of motion. For example, reference [I] discusses the development of a linear control design for maintaining a halo orbit about the Earth-Moon L2 libration point. Trial runs indicated the trajectory was unstable for starting points exceeding 45,000 km from the L2 point. Also, there was significant growth in the control effort required to maintain the orbit as the nominal radius increased. This result is a consequence of the increased influence of the system non-linearities, as the trajectory deviated from the linearization point, L2. As an alternative, this paper presents the development of a non-linear control strategy, based on a Hamiltonian formulation of the equations of motion. The control strategy is applied to the problem of formation maintenance, rather than simple station
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: 2001 Astrodynamics Specialist Conference; Jul 30, 2001 - Aug 02, 2001; Quebec; Canada
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-17
    Beschreibung: Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: Flight Dynamics Conference; Aug 01, 2001; Canada
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-13
    Beschreibung: GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: GSFC-E-DAA-TN23947 , National Space-Based Positioning, Navigation, and Timing Advisory Board Meeting; Jun 11, 2015 - Jun 12, 2015; Annapolis, MD; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found amateur radio and its connection to life on Earth to be a important on-board companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. This paper will discuss the development, qualification, installation and operation of the amateur radio system. It will also discuss some of the challenges that the amateur radio international team of volunteers overcame to bring its first phase of equipment on ISS to fruition.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: World Space Congress; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: Over the past several years the Guidance, Navigation and Control Center (GNCC) at NASA's Goddard Space Flight Center (GSFC) has actively engaged in the development of advanced GN&C technology to enable future Earth and Space science missions. The Multi-Function GN&C System (MFGS) design presented in this paper represents the successful coalescence of several discrete GNCC hardware and software technology innovations into one single highly integrated, compact, low power and low cost unit that simultaneously provides autonomous real time on-board attitude determination solutions and navigation solutions with accuracies that satisfy many future GSFC mission requirements. The MFGS is intended to operate as a single self-contained multifunction unit combining the functions now typically performed by a number of hardware units on a spacecraft. However, recognizing the need to satisfy a variety of future mission requirements, design provisions have been included to permit the unit to interface with a number of external remotely mounted sensors and actuators such as magnetometers, sun sensors, star cameras, reaction wheels and thrusters. The result is a highly versatile MFGS that can be configured in multiple ways to suit a realm of mission-specific GN&C requirements. It is envisioned that the MFGS will perform a mission enabling role by filling the microsat GN&C technology gap. In addition, GSFC believes that the MFGS could be employed to significantly reduce volume, power and mass requirements on conventional satellites.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: AAS-02-062 , 25th Annual AAS Guidance and Control Conference; Feb 06, 2002 - Feb 10, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-08-14
    Beschreibung: Amateur Radio on the International Space Station (ARISS) represents the first educational outreach program that is flying on the International Space Station (ISS). The astronauts and cosmonauts will work hard on the International Space Station, but they plan to take some time off for educational activities with schools. The National Aeronautics and Space Administration s (NASA s) Education Division is a major supporter and sponsor of this student outreach activity on the ISS. This meets NASA s educational mission objective: To inspire the next generation of explorers.. .as only NASA can. The amateur radio community is helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS sponsored hardware and activities, students on Earth get a first-hand feel of what it is like to live and work in space. This paper will discuss the educational outreach accomplishments of ARISS, the school contact process, the ARISS international cooperation and volunteers, and ISS Ham radio plans for the future.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: IAC-02-P.3.02 , World Space Congress; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-08-14
    Beschreibung: The United Nations (UN) International Committee on Global Navigation Satellite Services (ICG) Working Group B (WG-B) Space Users Subgroup is responsible for continual updates to the UN publication ST/SPACE/75, "The Interoperable Global Navigation Satellite Systems Space Service Volume" (the Booklet). This presentation captures NASA-proposed updates to the initial release of the Booklet. This includes the addition of a chapter on flight experiences and opportunities, analysis of dilution of precision, identification of specified performance figures, revised characterization of the existing lunar analysis, and miscellaneous other updates.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: GSFC-E-DAA-TN69652 , International Committee on Global Navigation Satellite Systems (ICG); Jun 11, 2019; Vienna; Austria|WG-B Space Users Subgroup Meeting; Jun 11, 2019; Vienna; Austria
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-08-14
    Beschreibung: Global Navigation Satellite Systems (GNSS), now routinely used for navigation by spacecraft in low Earth orbit, are being used increasingly by high-altitude users in geostationary orbit and high eccentric orbits as well, near to and above the GNSS constellations themselves. Available signals in these regimes are very limited for any single GNSS constellation due to the weak signal strength, the blockage of signals by the Earth, and the limited number of satellites. But with the recent development of multiple GNSS constellations and ongoing upgrades to existing constellations, multi-GNSS signal availability is set to improve significantly. This will only be achieved if these signals are designed to be interoperable and are clearly documented and supported.All satellite navigation constellation providers are working together through the United Nations International Committee on GNSS (ICG) to establish an interoperable multi-GNSS Space Service Volume (SSV) for the benefit of all GNSS space users. The multi-GNSS SSV represents a common set of baseline definitions and assumptions for high-altitude service in space, documents the service provided by each constellation, and provides a framework for continued support for space users. This paper provides an overview of the GNSS SSV concept, development, status, and achievements within the ICG. It describes the final adopted definition and performance characteristics of the GNSS SSV, as well as the numerous benefits and use cases enabled by this development, and summarizes extensive technical analysis that was performed to illustrate these benefits in terms of signal availability, both on a global scale, and for multiple distinct mission types.
    Schlagwort(e): Space Communications, Spacecraft Communications, Command and Tracking
    Materialart: GSFC-E-DAA-TN60813 , International Astronautical Congress; Oct 01, 2018 - Oct 05, 2018; Bremen; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...