ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(10),(2021): e2021JB022228, https://doi.org/10.1029/2021JB022228.
    Description: Seafloor massive sulfide deposits form in remote environments, and the assessment of deposit size and composition through drilling is technically challenging and expensive. To aid the evaluation of the resource potential of seafloor massive sulfide deposits, three-dimensional inverse modeling of geophysical potential field data (magnetic and gravity) collected near the seafloor can be carried out to further enhance geologic models interpolated from sparse drilling. Here, we present inverse modeling results of magnetic and gravity data collected from the active mound at the Trans-Atlantic Geotraverse hydrothermal vent field, located at 26°08′N on the Mid-Atlantic Ridge, using autonomous underwater vehicle and submersible surveying. Both minimum-structure and surface geometry inverse modeling methods were utilized. Through deposit-scale magnetic modeling, the outer extent of a chloritized alteration zone within the basalt host rock below the mound was resolved, providing an indication of the angle of the rising hydrothermal fluid and the depth and volume of seawater/hydrothermal mixing zone. The thickness of the massive sulfide mound was determined by modeling the gravity data, enabling the tonnage of the mound to be estimated at 2.17 ± 0.44 Mt through this geophysics-based, noninvasive approach.
    Description: The authors would like to thank the captain, crew, and scientific team from the 2016 R/V Meteor M127 and 1994 R/V Yokosuka MODE'94 cruises for all their work collecting the data modeled in this study. C. Galley is funded through an NSERC Discovery Grant and Memorial University's School of Graduate Studies Grant.
    Description: 2022-03-29
    Keywords: Seafloor massive sulfide deposit ; Potential field modeling ; Inverse modeling ; Gravity ; Magnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...