ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-04-27
    Description: Little is known of how plant disease resistance (R) proteins recognize pathogens and activate plant defenses. Rcr3 is specifically required for the function of Cf-2, a Lycopersicon pimpinellifolium gene bred into cultivated tomato (Lycopersicon esculentum) for resistance to Cladosporium fulvum. Rcr3 encodes a secreted papain-like cysteine endoprotease. Genetic analysis shows Rcr3 is allelic to the L. pimpinellifolium Ne gene, which suppresses the Cf-2-dependent autonecrosis conditioned by its L. esculentum allele, ne (necrosis). Rcr3 alleles from these two species encode proteins that differ by only seven amino acids. Possible roles of Rcr3 in Cf-2-dependent defense and autonecrosis are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kruger, Julia -- Thomas, Colwyn M -- Golstein, Catherine -- Dixon, Mark S -- Smoker, Matthew -- Tang, Saijun -- Mulder, Lonneke -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):744-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976458" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Cladosporium/*physiology ; Cloning, Molecular ; Cysteine Endopeptidases/chemistry/*genetics/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Immunity, Innate ; Leucine/analogs & derivatives/pharmacology ; Lycopersicon esculentum/*enzymology/genetics/*microbiology/physiology ; Molecular Sequence Data ; Mutation ; Phenotype ; *Plant Diseases ; Plant Leaves/enzymology ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/chemistry/metabolism ; Tobacco/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-01
    Description: A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous characterization of alternative splice forms, diverse modifications (for example, acetylation and methylation) and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species. 'Top-down' interrogation of whole proteins can overcome these problems for individual proteins, but has not been achieved on a proteome scale owing to the lack of intact protein fractionation methods that are well integrated with tandem mass spectrometry. Here we show, using a new four-dimensional separation system, identification of 1,043 gene products from human cells that are dispersed into more than 3,000 protein species created by post-translational modification (PTM), RNA splicing and proteolysis. The overall system produced greater than 20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kDa and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply modified species in response to accelerated cellular ageing (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database, the data provide precise correlations to individual genes and proof-of-concept for large-scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, John C -- Zamdborg, Leonid -- Ahlf, Dorothy R -- Lee, Ji Eun -- Catherman, Adam D -- Durbin, Kenneth R -- Tipton, Jeremiah D -- Vellaichamy, Adaikkalam -- Kellie, John F -- Li, Mingxi -- Wu, Cong -- Sweet, Steve M M -- Early, Bryan P -- Siuti, Nertila -- LeDuc, Richard D -- Compton, Philip D -- Thomas, Paul M -- Kelleher, Neil L -- F30 DA026672/DA/NIDA NIH HHS/ -- F30 DA026672-03/DA/NIDA NIH HHS/ -- GM 067193-08/GM/NIGMS NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- P30 DA018310-06/DA/NIDA NIH HHS/ -- P30DA 018310/DA/NIDA NIH HHS/ -- R01 GM067193/GM/NIGMS NIH HHS/ -- R01 GM067193-08/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Oct 30;480(7376):254-8. doi: 10.1038/nature10575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, and the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22037311" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Aging/genetics ; Cell Line ; DNA Damage ; Databases, Protein ; HMGA1a Protein/analysis ; HMGA1b Protein/analysis ; HeLa Cells ; Humans ; Phenotype ; Protein Isoforms/*analysis/*chemistry ; Protein Processing, Post-Translational ; Proteolysis ; Proteome/*analysis/*chemistry ; Proteomics/instrumentation/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-17
    Description: Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skarnes, William C -- Rosen, Barry -- West, Anthony P -- Koutsourakis, Manousos -- Bushell, Wendy -- Iyer, Vivek -- Mujica, Alejandro O -- Thomas, Mark -- Harrow, Jennifer -- Cox, Tony -- Jackson, David -- Severin, Jessica -- Biggs, Patrick -- Fu, Jun -- Nefedov, Michael -- de Jong, Pieter J -- Stewart, A Francis -- Bradley, Allan -- 077188/Wellcome Trust/United Kingdom -- U01-HG004080/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2011 Jun 15;474(7351):337-42. doi: 10.1038/nature10163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. skarnes@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21677750" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Computational Biology ; Embryonic Stem Cells/cytology/metabolism ; *Gene Deletion ; Gene Knockout Techniques/*methods ; Genes/*genetics ; Genes, Lethal/genetics ; Genetic Association Studies/*methods ; Genetic Vectors/genetics ; Genome/*genetics ; Genomics ; Genotype ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Knockout/*genetics ; Mutagenesis, Insertional/methods ; Phenotype ; Polymerase Chain Reaction ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-04-21
    Description: Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion, is linked to chromosome 11p14-15.1. The newly cloned high-affinity sulfonylurea receptor (SUR) gene, a regulator of insulin secretion, was mapped to 11p15.1 by means of fluorescence in situ hybridization. Two separate SUR gene splice site mutations, which segregated with disease phenotype, were identified in affected individuals from nine different families. Both mutations resulted in aberrant processing of the RNA sequence and disruption of the putative second nucleotide binding domain of the SUR protein. Abnormal insulin secretion in PHHI appears to be caused by mutations in the SUR gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, P M -- Cote, G J -- Wohllk, N -- Haddad, B -- Mathew, P M -- Rabl, W -- Aguilar-Bryan, L -- Gagel, R F -- Bryan, J -- DK38146/DK/NIDDK NIH HHS/ -- DK44311/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):426-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Specialties, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7716548" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; DNA Mutational Analysis ; DNA, Complementary/genetics ; Genotype ; Humans ; Hyperinsulinism/*genetics ; Hypoglycemia/*genetics ; Infant ; Insulin/secretion ; Molecular Sequence Data ; Mutation ; Pancreatic Diseases/*genetics ; Phenotype ; Point Mutation ; Potassium Channels/chemistry/*genetics ; *Potassium Channels, Inwardly Rectifying ; RNA Splicing ; Receptors, Drug/chemistry/*genetics ; Sulfonylurea Compounds/metabolism ; Sulfonylurea Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-05
    Description: Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narasimhan, Vagheesh M -- Hunt, Karen A -- Mason, Dan -- Baker, Christopher L -- Karczewski, Konrad J -- Barnes, Michael R -- Barnett, Anthony H -- Bates, Chris -- Bellary, Srikanth -- Bockett, Nicholas A -- Giorda, Kristina -- Griffiths, Christopher J -- Hemingway, Harry -- Jia, Zhilong -- Kelly, M Ann -- Khawaja, Hajrah A -- Lek, Monkol -- McCarthy, Shane -- McEachan, Rosie -- O'Donnell-Luria, Anne -- Paigen, Kenneth -- Parisinos, Constantinos A -- Sheridan, Eamonn -- Southgate, Laura -- Tee, Louise -- Thomas, Mark -- Xue, Yali -- Schnall-Levin, Michael -- Petkov, Petko M -- Tyler-Smith, Chris -- Maher, Eamonn R -- Trembath, Richard C -- MacArthur, Daniel G -- Wright, John -- Durbin, Richard -- van Heel, David A -- GM 099640/GM/NIGMS NIH HHS/ -- MR/M009017/1/Medical Research Council/United Kingdom -- R01 GM104371/GM/NIGMS NIH HHS/ -- R01GM104371/GM/NIGMS NIH HHS/ -- WT098051/Wellcome Trust/United Kingdom -- WT099769/Wellcome Trust/United Kingdom -- WT101597/Wellcome Trust/United Kingdom -- WT102627/Wellcome Trust/United Kingdom -- British Heart Foundation/United Kingdom -- Arthritis Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- Department of Health/United Kingdom -- Chief Scientist Office/United Kingdom -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):474-7. doi: 10.1126/science.aac8624. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK. ; Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. ; Diabetes and Endocrine Centre, Heart of England NHS Foundation Trust and University of Birmingham, Birmingham B9 5SS, UK. ; TPP, Mill House, Troy Road, Leeds LS18 5TN, UK. ; Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK. ; 10X Genomics, 7068 Koll Center Parkway, Suite 415, Pleasanton, CA 94566, USA. ; Farr Institute of Health Informatics Research, London NW1 2DA, UK. Institute of Health Informatics, University College London, London NW1 2DA, UK. ; School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK. ; Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Box 238, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk. ; Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. rd@sanger.ac.uk d.vanheel@qmul.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940866" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Consanguinity ; DNA Mutational Analysis ; Drug Prescriptions ; Exome/genetics ; Female ; Fertility ; Gene Knockout Techniques ; Genes, Lethal ; Genetic Loci ; Genome, Human ; Great Britain ; *Health ; Histone-Lysine N-Methyltransferase/*genetics ; Homologous Recombination ; Homozygote ; Humans ; Male ; Mothers ; Pakistan/ethnology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...