ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A continuous mix pilot plant was constructed at Aerojet Propulsion Division in Sacramento, California to develop a robust propellant mixing process for the full scale plant that was to be built at the NASA Advanced Solid Rocket Motor facility Yellow Creek, Mississippi. The plant was used to conduct dozens of subsystem and full system mixing tests for evaluation of equipment, processing methods, and control schemes for later use at the production plant. As a culmination to this work, a series of designed experiments were conducted using an eight run Taguchi analysis with four factors at two levels each to determine the primary effect of processing parameters on propellant ballistic and mechanical properties. The factors examined in these runs included the propellant production rate (454 (1000) and 622 kg/hr (1371 Ib/hr)), the product temperature out of the mixer (49 (120) and 63 deg C (145 deg F)), mixer screw speed (75 and 90 rpm), and the deaerator excess capacity (20 and 80 percent). Measured response variables included the uncured and cured density, Crawford Bomb liquid strand burning rates, and selected mechanical properties. The experiment revealed that several of the response variables displayed significant changes from run-to-run with the product temperature being the single most important factor. After concluding this experiment, a twenty-six hour confirmation run was conducted to verify the conclusions reached in the designed experiment. The extended run produced over 12,250 kgs (27,000 lbs) of propellant meeting all of the pre-run targeted properties including density (1.803 g/cc (0.065 lb/in(exp 3)) with a 0.12 percent coefficient of variation (CV) at 25 deg C (77 deg F)), liquid strand burn rate (0.889 cm/s (0.350 in/s) with a 0.69 percent CV at 4210 KPa (610 psig), 15.6 deg C (60 deg F)), nominal maximum stress (828 KPa (120 psig) with a 2.84 percent CV, S&E at 25 deg C (77 deg F), 5.08 cm/min (2 in/min)), strain at nominal maximum (47.4 percent with a 3.96 percent CV), and initial tangent modulus (5349 KPa (775 psig) with a 7.26 percent CV).
    Keywords: PROPELLANTS AND FUELS
    Type: JHU, The 1993 JANNAF Propulsion Meeting, Volume 2; p 125-133
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...