ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-31
    Description: Ips typographus (Coleoptera, Scolytinae) is a spruce-infesting bark beetle that occurs throughout Europe and Asia. The beetle can cause considerable damage, especially when colonized trees are stressed and beetle populations increase. Although some studies have shown that populations of I. typographus in Europe, China and Japan are genetically distinct, these populations are biologically similar, including a strong association with ophiostomatoid fungi. To date, only two Leptographium spp. have been reported from the beetle in China, while 40 species have been reported from Europe and 13 from Japan. The aims of this study were to identify the ophiostomatoid fungal associates of I. typographus in north-eastern China, and to determine whether the fungal assemblages reflect the different geographical populations of the beetle. Field surveys in Jilin and Heilongjiang provinces yielded a total of 1 046 fungal isolates from 145 beetles and 178 galleries. Isolates were grouped based on morphology and representatives of each group were identified using DNA sequences of the ribosomal LSU, ITS, β-tubulin, calmodulin and elongation factor 1-α gene regions. A total of 23 species of ophiostomatoid fungi were identified, including 12 previously described species and 11 novel species, all of which are described here. The dominant species were Ophiostoma bicolor, Leptographium taigense and Grosmannia piceiperda D, representing 40.5 %, 27.8 % and 17.8 % of the isolates, respectively. Comparisons of species from China, Europe and Japan are complicated by the fact that some of the European and all the Japanese species were identified based only on morphology. However, assuming that those identifications are correct, five species were shared between Europe, Japan and China, two species were shared between China and Japan, five between Europe and China, and two between Europe and Japan. Consequently, Ips typographus populations in these different geographic areas have different fungal assemblages, suggesting that the majority of these beetle-associations are promiscuous. The results also suggested that the symbionts of the bark beetle do not reflect the population structures of the beetle. The use of fungal symbiont assemblages to infer population structures and invasion history of its vectors should thus be interpreted with circumspection.
    Keywords: 11 new taxa ; Ophiostomatales ; Microascales ; vector ; Scolytinae
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi (0031-05850) vol.25 (2010) nr.1 p.72
    Publication Date: 2015-04-20
    Description: The timber and pulp industries of Finland rely heavily on importations from Russia as source of raw timber. These imports raise the risk of accidentally importing forest pests and pathogens, especially bark beetles and their associated fungi, into Finland. Although ophiostomatoid fungi have previously been reported from Finland and Russia, the risks of accidentally moving these fungi has prompted a first survey to compare the diversity of conifer-infesting bark beetles and associated fungi from boreal forests on both sides of the Finnish-Russian border. The aim of the present study was to identify and characterise Ophiostoma species isolated in association with 11 bark beetle species infesting Pinus sylvestris and Picea abies during this survey in the eastern parts of Finland and neighbouring Russia. Fungal isolates were grouped based on morphology and representatives of each morphological group were subjected to DNA sequence comparisons of the internal transcribed spaced region (ITS1, 5.8S, ITS2) and β-tubulin gene region. A total of 15 species of Ophiostoma were identified, including seven known species, five new species, and three species for which the identity remains uncertain. In the O. piceae-complex we identified O. canum, O. floccosum, O. karelicum and O. rachisporum sp. nov., and related to these, some isolates belonging to the European clade of O. minus in the O. minus-complex. Ophiostoma bicolor and O. fuscum sp. nov. were identified in the O. ips-complex, while O. ainoae, O. brunneo-ciliatum, O. tapionis sp. nov. and O. pallidulum sp. nov. were shown to group close to, but not in a strict monophyletic lineage with species of the O. ips-complex. Together with a single O. abietinum-like isolate, the only species that grouped close to the Sporothrix schenckiiO. stenoceras complex, was O. saponiodorum sp. nov.
    Keywords: Bark beetle ; insect-fungus relationship ; Ophiostoma ; Ophiostomatales ; symbiosis
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 25 no. 1, pp. 72-93
    Publication Date: 2024-01-12
    Description: The timber and pulp industries of Finland rely heavily on importations from Russia as source of raw timber. These imports raise the risk of accidentally importing forest pests and pathogens, especially bark beetles and their associated fungi, into Finland. Although ophiostomatoid fungi have previously been reported from Finland and Russia, the risks of accidentally moving these fungi has prompted a first survey to compare the diversity of conifer-infesting bark beetles and associated fungi from boreal forests on both sides of the Finnish-Russian border.\nThe aim of the present study was to identify and characterise Ophiostoma species isolated in association with 11 bark beetle species infesting Pinus sylvestris and Picea abies during this survey in the eastern parts of Finland and neighbouring Russia. Fungal isolates were grouped based on morphology and representatives of each morphological group were subjected to DNA sequence comparisons of the internal transcribed spaced region (ITS1, 5.8S, ITS2) and \xce\xb2-tubulin gene region. A total of 15 species of Ophiostoma were identified, including seven known species, five new species, and three species for which the identity remains uncertain. In the O. piceae-complex we identified O. canum, O. floccosum, O. karelicum and O. rachisporum sp. nov., and related to these, some isolates belonging to the European clade of O. minus in the O. minus-complex. Ophiostoma bicolor and O. fuscum sp. nov. were identified in the O. ips-complex, while O. ainoae, O. brunneo-ciliatum, O. tapionis sp. nov. and O. pallidulum sp. nov. were shown to group close to, but not in a strict monophyletic lineage with species of the O. ips-complex.\nTogether with a single O. abietinum-like isolate, the only species that grouped close to the Sporothrix schenckiiO. stenoceras complex, was O. saponiodorum sp. nov.
    Keywords: Bark beetle ; insect-fungus relationship ; Ophiostoma ; Ophiostomatales ; symbiosis
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-12
    Description: Ips typographus (Coleoptera, Scolytinae) is a spruce-infesting bark beetle that occurs throughout Europe and Asia. The beetle can cause considerable damage, especially when colonized trees are stressed and beetle populations increase. Although some studies have shown that populations of I. typographus in Europe, China and Japan are genetically distinct, these populations are biologically similar, including a strong association with ophiostomatoid fungi. To date, only two Leptographium spp. have been reported from the beetle in China, while 40 species have been reported from Europe and 13 from Japan. The aims of this study were to identify the ophiostomatoid fungal associates of I. typographus in north-eastern China, and to determine whether the fungal assemblages reflect the different geographical populations of the beetle. Field surveys in Jilin and Heilongjiang provinces yielded a total of 1 046 fungal isolates from 145 beetles and 178 galleries. Isolates were grouped based on morphology and representatives of each group were identified using DNA sequences of the ribosomal LSU, ITS, \xce\xb2-tubulin, calmodulin and elongation factor 1-\xce\xb1 gene regions. A total of 23 species of ophiostomatoid fungi were identified, including 12 previously described species and 11 novel species, all of which are described here. The dominant species were Ophiostoma bicolor, Leptographium taigense and Grosmannia piceiperda D, representing 40.5 %, 27.8 % and 17.8 % of the isolates, respectively. Comparisons of species from China, Europe and Japan are complicated by the fact that some of the European and all the Japanese species were identified based only on morphology. However, assuming that those identifications are correct, five species were shared between Europe, Japan and China, two species were shared between China and Japan, five between Europe and China, and two between Europe and Japan. Consequently, Ips typographus populations in these different geographic areas have different fungal assemblages, suggesting that the majority of these beetle-associations are promiscuous. The results also suggested that the symbionts of the bark beetle do not reflect the population structures of the beetle. The use of fungal symbiont assemblages to infer population structures and invasion history of its vectors should thus be interpreted with circumspection.
    Keywords: 11 new taxa ; Ophiostomatales ; Microascales ; vector ; Scolytinae
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...