ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-13
    Description: Abstract
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota” (www.earthshape.net) installed three meteorological stations at an elevational gradient in the National Park La Campana, Chile, in the sector Ocoa, within one catchment, that is one of the four EarthShape core research sites. They are located at a valley position, at the slope and the crest of the catchment. For reference, the valley station is neighbouring a weather station (Campbell Scientific) that the EarthShape project has installed earlier, in 2016 (Übernickel et al., 2020). The other two weather stations are installed on higher elevations. The weather stations are intended to provide baseline meteorological data along the elevational gradient within the La Campana catchment. Each station is configured to include sensors that record air temperature, relative humidity, barometric pressure as well as total solar radiation at 2 m height; precipitation at 1 m height. The data recording started in March 2019. This publication provides raw data as downloaded from the three stations, appended to one single *.xlsx file per station. The data is measured in 30 minutes intervals. The full description of the data and methods is provided in the data description file.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: South America ; Chile ; Coastal Cordillera ; National Parc La Campana ; EarthShape ; radiation ; temperature ; precipitation ; pressure ; humidity ; weather station ; METER group ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION 〉 SOLAR RADIATION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC TEMPERATURE 〉 AIR TEMPERATURE ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WATER VAPOR 〉 HUMIDITY ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-15
    Description: Abstract
    Description: This data publication contains new and recalculated soil production, chemical weathering, and physical erosion rates for granitoid soil-mantled hillslopes in the Chilean Coastal Cordillera. For further comparison and data discussion the data publication presents global rates from granitoid soil-mantled hillslopes combined with a suite of parameters at the sample location (e.g., slope, precipitation, temperature, vegetation cover). The data were collected within the DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota". The data publication contains one excel table including tables S1 to S9. In addition, these nine sub-tables are available as txt files in a zip-file. They are supplementary material to Schaller et al. (2021).
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: EarthShape ; Chile ; Coastal Cordillera ; soil production rate ; chemical weathering rate ; physical erosion rate ; National Parc Pan de Azucar ; Private Reserve Santa Gracia ; National Parc La Campana ; National Parc Nahuelbuta ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-09
    Description: Abstract
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota” (www.earthshape.net, short description of the project below) installed a meteorological station network consisting of four stations between ~26 °S to ~38 °S in the Coastal Cordillera of Chile, South America. The stations are intended to provide baseline meteorological data along the climate and ecological gradient investigated in the EarthShape program. The stations are located in the EarthShape study areas, encompassing desert, semi-desert, mediterranean, and temperate climate zones. Each station is configured to include sensors that record precipitation at ground level, radiation at 2.8 m height, wind at 3 m height, 25 cm depth soil temperature, soil water content and bulk electrical conductivity, 2 m air temperature and relative humidity, and barometric pressure at 30-minute intervals. The data recording started in March/April 2016. The EarthShape project runs until December 2021. Data collection will continue until that date, and potentially longer depending on available funds. This publication provides two sets of data: raw data and processed data. The raw data contains 2 file types per meteorological station: (1) all measured parameters of the whole dataset measured in 30 minutes intervals as downloaded from the station. Furthermore, we provide (2) one table per station of high-resolution precipitation events, measured in 5 min. intervals that were triggered during rain events at each station. The processed data consists of a continuous timeseries of observations since the activation of each station. The processing consists of the exclusion of erroneous data, caused by maintenance of the weather-stations and sporadic malfunction of sensors detected during data screening. The excluded data is communicated in a logfile (excel table), comments from data screening, solar eclipse and others are summarized in history files (ASCII ). the full description of the data and methods is provided in the data description file (Data description file).
    Description: Other
    Description: "EarthShape - Earth Surface Shaping by Biota" bridges between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the distant geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: South America ; Chile ; Cordillera de la Costa ; National Park Pan de Azúcar ; National Park Nahuelbuta ; National Park La Campana ; Private Reserve Santa Gracia ; EarthShape ; Campbell scientific ; radiation ; wind ; soil ; temperature ; precipitation ; pressure ; humidity ; weather station ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION 〉 SOLAR RADIATION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC TEMPERATURE 〉 AIR TEMPERATURE ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WATER VAPOR 〉 HUMIDITY ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WINDS 〉 SURFACE WINDS 〉 WIND SPEED/WIND DIRECTION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-07
    Description: Abstract
    Description: The Chilean Coastal Cordillera features a spectacular climate and vegetation gradient, ranging from arid and unvegetated areas in the north to humid and forested areas in the south. The DFG Priority Program "EarthShape" (Earth Surface Shaping by Biota) uses this natural gradient to investigate how climate and biological processes shape the Earth's surface. We explored the critical zone, the Earth's uppermost layer, in four key sites located in desert, semidesert, mediterranean, and temperate climate zones of the Coastal Cordillera, with the focus on weathering of granitic rock. Here, we present first results from four ~2m-deep regolith profiles to document: (1) architecture of weathering zone; (2) degree and rate of rock weathering, thus the release of mineral-derived nutrients to the terrestrial ecosystems; (3) denudation rates; and (4) microbial abundances of bacteria and archaea in the saprolite. From north to south, denudation rates from cosmogenic nuclides are ~10 t km-2 yr-1 at the arid Pan de Azúcar site, ~20 t km-2 yr-1 at the semi-arid site of Santa Gracia, ~60 t km-2 yr-1 at the mediterranean climate site of La Campana, and ~30 t km-2 yr-1 at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (~26 °S) to south (~38 °S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies. The data are supplementary material to Oeser et al. (2018). All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description in the internet. The content of the eight data tables is: Table S1: Catena properties of the four primary EarthShape study areas. Table S2: Major and selected trace element concentration for bedrock samples. Table S3 Normative modal abundance of rock-forming minerals. Table S4: Major and selected trace element concentration for regolith samples and dithionite and oxalate soluble pedogenic oxides. Table S5: Weathering indices CDF and CIA, and the mass transfer coefficients (τ) for major and trace elements along with volumetric strain (ɛ). Table S6: Chemical weathering and physical erosion rates Table S7: Relative microbial abundances in saprolite of the four study areas. Table S8: Uncorrected major and trace element concentration. The data tables are provided as one Excel file with eight spreadsheets, as individual tables in .csv format in a zipped archive and as printable PDF versions in a zipped archive.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) bridges between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the distant geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: denudation ; microbial abundance ; Chile ; climate ; National Parc Pan de Azucar ; Private Reserve Santa Gracia ; National Parc La Campana ; National Parc Nahuelbuta ; Coastal Cordillera ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 MICROFLORA ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...