ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 30 (1995), S. 437-457 
    ISSN: 1059-910X
    Keywords: Dystrophin ; Actin ; Spectrin ; Dystrophin related protein ; Quick-freezing ; deep-etching method ; Muscle culture ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: We studied the developmental changes of localization of dystrophin and other cytoskeletal proteins, especially actin, spectrin and dystrophin related protein (DRP) using immunocytochemistry and quick-freezing and deep-etching (QF-DE) method.In development studies of mouse and human muscle cultures, some myoblasts had positive reactions to spectrin, DRP, and F-actin, but not dystrophin. In aneurally cultured myotubes, dystrophin, DRP, and spectrin were localized diffusely in the cytoplasm and later in discontinous patterns on the plasma membrane, when myotubes became mature. Spectrin and DRP had more positive reactions in immature myotubes, compared with those of dystrophin.In some areas of myotubes, dystrophin/spectrin and spectrin/actin were localized reciprocally. In innervated cultured human muscle cells, dystrophin and DRP were localized in neuro-muscular junctions, which were co-localized with clusters of acetylcholine receptors.By using the QF-DE method, dystrophin was localized just underneath the plasma membrane, and closely linked to actin-like filaments (8-10 nm in diameter), most of which were decorated with myosin subfragment 1. In actin-poor regions, spectrin was detected as well-organized filamentous structures in highly interconnected networks with various diameters. DRP was distributed irregularly with granular appearance inside the cytoplasm and also under the plasma membrane in immature mouse myotubes.Our present studies show that dystrophin, spectrin, and DRP are localized differently at the developmental stages of myotubes. These results suggest that dystrophin, spectrin, and DRP are organized independently in developing myotubes and these cytoskeletal proteins might play different functions in the preservation of plasma membrane stability in developing myotubes. © 1995 Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...