ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-11
    Description: Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dreyfus, Cyrille -- Laursen, Nick S -- Kwaks, Ted -- Zuijdgeest, David -- Khayat, Reza -- Ekiert, Damian C -- Lee, Jeong Hyun -- Metlagel, Zoltan -- Bujny, Miriam V -- Jongeneelen, Mandy -- van der Vlugt, Remko -- Lamrani, Mohammed -- Korse, Hans J W M -- Geelen, Eric -- Sahin, Ozcan -- Sieuwerts, Martijn -- Brakenhoff, Just P J -- Vogels, Ronald -- Li, Olive T W -- Poon, Leo L M -- Peiris, Malik -- Koudstaal, Wouter -- Ward, Andrew B -- Wilson, Ian A -- Goudsmit, Jaap -- Friesen, Robert H E -- GM080209/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1343-8. doi: 10.1126/science.1222908. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/chemistry/*immunology ; Antibodies, Neutralizing/chemistry/immunology ; Conserved Sequence ; Hemagglutinin Glycoproteins, Influenza Virus/*immunology ; Humans ; Immunodominant Epitopes/chemistry/*immunology ; Influenza B virus/*immunology ; Influenza Vaccines/*immunology ; Mice ; Molecular Sequence Data ; Neutralization Tests ; Orthomyxoviridae Infections/*prevention & control ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-10
    Description: Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 x 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seder, Robert A -- Chang, Lee-Jah -- Enama, Mary E -- Zephir, Kathryn L -- Sarwar, Uzma N -- Gordon, Ingelise J -- Holman, LaSonji A -- James, Eric R -- Billingsley, Peter F -- Gunasekera, Anusha -- Richman, Adam -- Chakravarty, Sumana -- Manoj, Anita -- Velmurugan, Soundarapandian -- Li, MingLin -- Ruben, Adam J -- Li, Tao -- Eappen, Abraham G -- Stafford, Richard E -- Plummer, Sarah H -- Hendel, Cynthia S -- Novik, Laura -- Costner, Pamela J M -- Mendoza, Floreliz H -- Saunders, Jamie G -- Nason, Martha C -- Richardson, Jason H -- Murphy, Jittawadee -- Davidson, Silas A -- Richie, Thomas L -- Sedegah, Martha -- Sutamihardja, Awalludin -- Fahle, Gary A -- Lyke, Kirsten E -- Laurens, Matthew B -- Roederer, Mario -- Tewari, Kavita -- Epstein, Judith E -- Sim, B Kim Lee -- Ledgerwood, Julie E -- Graham, Barney S -- Hoffman, Stephen L -- VRC 312 Study Team -- 3R44AI055229-06S1/AI/NIAID NIH HHS/ -- 4R44AI055229-08/AI/NIAID NIH HHS/ -- 5R44AI058499-05/AI/NIAID NIH HHS/ -- N01-AI-40096/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1359-65. doi: 10.1126/science.1241800. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA. rseder@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929949" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Intravenous ; Adult ; Animals ; Cytokines/immunology ; Female ; Humans ; Immunity, Cellular ; Malaria Vaccines/*administration & dosage/adverse effects/*immunology ; Malaria, Falciparum/*prevention & control ; Male ; Mice ; Plasmodium falciparum/*immunology ; Sporozoites/immunology ; T-Lymphocytes/immunology ; Vaccination/adverse effects/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-02-14
    Description: Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression. In vitro, these cells differentiated into ECs. In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis. These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asahara, T -- Murohara, T -- Sullivan, A -- Silver, M -- van der Zee, R -- Li, T -- Witzenbichler, B -- Schatteman, G -- Isner, J M -- 2824/PHS HHS/ -- 53354/PHS HHS/ -- 57516/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):964-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge Street, Boston, MA 02135, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Biomarkers/analysis ; Cell Differentiation ; Cell Separation ; Cells, Cultured ; Endothelium, Vascular/chemistry/*cytology ; Flow Cytometry ; Hindlimb/blood supply ; Humans ; Ischemia/physiopathology ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; *Neovascularization, Physiologic ; Nitric Oxide Synthase/analysis ; Rabbits ; Receptor Protein-Tyrosine Kinases/analysis ; Receptors, Growth Factor/analysis ; Receptors, Vascular Endothelial Growth Factor ; Stem Cells/chemistry/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-28
    Description: Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152293/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152293/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hojun -- Haurigot, Virginia -- Doyon, Yannick -- Li, Tianjian -- Wong, Sunnie Y -- Bhagwat, Anand S -- Malani, Nirav -- Anguela, Xavier M -- Sharma, Rajiv -- Ivanciu, Lacramiora -- Murphy, Samuel L -- Finn, Jonathan D -- Khazi, Fayaz R -- Zhou, Shangzhen -- Paschon, David E -- Rebar, Edward J -- Bushman, Frederic D -- Gregory, Philip D -- Holmes, Michael C -- High, Katherine A -- P01 HL064190/HL/NHLBI NIH HHS/ -- P01 HL064190-11A1/HL/NHLBI NIH HHS/ -- T32 HL007150/HL/NHLBI NIH HHS/ -- T32 HL007150-35/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 26;475(7355):217-21. doi: 10.1038/nature10177.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, CTRB 5000, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21706032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; *Disease Models, Animal ; Endonucleases/chemistry/genetics/metabolism ; Exons/genetics ; Factor IX/analysis/genetics ; Gene Targeting/*methods ; Genetic Therapy/*methods ; Genetic Vectors/genetics ; Genome/*genetics ; HEK293 Cells ; Hemophilia B/*genetics/physiopathology ; *Hemostasis ; Humans ; Introns/genetics ; Liver/metabolism ; Liver Regeneration ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Phenotype ; Sequence Homology ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-02
    Description: Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wei -- Shuai, Ling -- Wan, Haifeng -- Dong, Mingzhu -- Wang, Meng -- Sang, Lisi -- Feng, Chunjing -- Luo, Guan-Zheng -- Li, Tianda -- Li, Xin -- Wang, Libin -- Zheng, Qin-Yuan -- Sheng, Chao -- Wu, Hua-Jun -- Liu, Zhonghua -- Liu, Lei -- Wang, Liu -- Wang, Xiu-Jie -- Zhao, Xiao-Yang -- Zhou, Qi -- England -- Nature. 2012 Oct 18;490(7420):407-11. doi: 10.1038/nature11435. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023130" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Animals ; Biomarkers/metabolism ; Blastocyst/cytology ; Cell Line ; Cell Nucleus ; Chimera/embryology/genetics ; Embryonic Stem Cells/cytology/*physiology ; Epigenesis, Genetic ; Female ; *Haploidy ; Male ; Mice ; Mice, Transgenic/embryology/genetics/*growth & development ; Models, Animal ; Models, Genetic ; Oocytes/cytology/growth & development/metabolism ; Pluripotent Stem Cells/cytology/physiology ; Sperm Injections, Intracytoplasmic ; Spermatozoa/metabolism/transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-27
    Description: Two major goals for the design of new catalysts are the facilitation of chemical transformations and control of product outcome. An antibody has been induced that efficiently catalyzes a cationic cyclization in which an acyclic olefinic sulfonate ester substrate is converted almost exclusively (98 percent) to a cyclic alcohol. The key to the catalysis of the reaction and the restriction of the product complexity is the use of antibody binding energy to rigidly enforce a concerted mechanism in accord with the design of the hapten. Thus, the ability to direct binding energy allows the experimenter to dictate a reaction mechanism which is an otherwise difficult task in chemistry. New catalysts for cationic cyclization may be of general use in the formation of carbon-carbon and carbon-heteroatom bonds leading to multi-ring molecules including steroids and heterocyclic compounds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, T -- Janda, K D -- Ashley, J A -- Lerner, R A -- GM-43858/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 27;264(5163):1289-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8191282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/chemistry ; Catalysis ; Cations/*chemistry ; Chromatography, Gas ; Cyclization ; Haptens ; Kinetics ; Mice ; Organosilicon Compounds/*chemistry ; Sulfanilic Acids/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-04-15
    Description: Gene transcription may be regulated by remote enhancer or insulator regions through chromosome looping. Using a modification of chromosome conformation capture (3C) and fluorescence in situ hybridization, we found that one allele of the insulin-like growth factor 2 (Igf2)/H19 imprinting control region (ICR) on chromosome 7 colocalized with one allele of Wsb1/Nf1 on chromosome 11. Omission of CCCTC-binding factor (CTCF) or deletion of the maternal ICR abrogated this association and altered Wsb1/Nf1 gene expression. These findings demonstrate that CTCF mediates an interchromosomal association, perhaps by directing distant DNA segments to a common transcription factory, and the data provide a model for long-range allele-specific associations between gene regions on different chromosomes that suggest a framework for DNA recombination and RNA trans-splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Jian Qun -- Li, Tao -- Hu, Ji Fan -- Vu, Thanh H -- Chen, Hui Ling -- Qiu, Xin Wen -- Cherry, Athena M -- Hoffman, Andrew R -- DK036054/DK/NIDDK NIH HHS/ -- DK065283/DK/NIDDK NIH HHS/ -- HD047013/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):269-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Service, Department of Veterans Affairs, Palo Alto Health Care System, and Department of Medicine, Stanford University, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614224" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Binding Sites ; Chromatin Immunoprecipitation ; Chromosomes, Mammalian/*genetics/metabolism ; DNA-Binding Proteins/*metabolism ; Epistasis, Genetic ; Female ; *Gene Expression Regulation ; Genomic Imprinting ; In Situ Hybridization, Fluorescence ; Insulin-Like Growth Factor II/genetics ; Male ; Mice ; Neurofibromin 1/genetics ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Regulatory Elements, Transcriptional ; Repressor Proteins/*metabolism ; Transcription, Genetic ; Ubiquitin-Protein Ligases/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-10
    Description: Our goal is to develop a vaccine that sustainably prevents Plasmodium falciparum (Pf) malaria in 〉/=80% of recipients. Pf sporozoites (PfSPZ) administered by mosquito bites are the only immunogens shown to induce such protection in humans. Such protection is thought to be mediated by CD8(+) T cells in the liver that secrete interferon-gamma (IFN-gamma). We report that purified irradiated PfSPZ administered to 80 volunteers by needle inoculation in the skin was safe, but suboptimally immunogenic and protective. Animal studies demonstrated that intravenous immunization was critical for inducing a high frequency of PfSPZ-specific CD8(+), IFN-gamma-producing T cells in the liver (nonhuman primates, mice) and conferring protection (mice). Our results suggest that intravenous administration of this vaccine will lead to the prevention of infection with Pf malaria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, J E -- Tewari, K -- Lyke, K E -- Sim, B K L -- Billingsley, P F -- Laurens, M B -- Gunasekera, A -- Chakravarty, S -- James, E R -- Sedegah, M -- Richman, A -- Velmurugan, S -- Reyes, S -- Li, M -- Tucker, K -- Ahumada, A -- Ruben, A J -- Li, T -- Stafford, R -- Eappen, A G -- Tamminga, C -- Bennett, J W -- Ockenhouse, C F -- Murphy, J R -- Komisar, J -- Thomas, N -- Loyevsky, M -- Birkett, A -- Plowe, C V -- Loucq, C -- Edelman, R -- Richie, T L -- Seder, R A -- Hoffman, S L -- 5R44AI055229-07/AI/NIAID NIH HHS/ -- 5R44AI058375-05/AI/NIAID NIH HHS/ -- 5R44AI058499-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):475-80. doi: 10.1126/science.1211548. Epub 2011 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD 20910, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903775" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antibodies, Protozoan/blood/immunology ; Antigens, Protozoan/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Humans ; Injections, Intravenous ; Injections, Subcutaneous ; Interferon-gamma/biosynthesis/immunology ; Liver/*immunology ; Macaca mulatta ; Malaria Vaccines/administration & dosage/adverse effects/*immunology ; Malaria, Falciparum/*prevention & control ; Mice ; Middle Aged ; Plasmodium falciparum/*immunology ; Rabbits ; Sporozoites/*immunology ; Vaccines, Attenuated/administration & dosage/adverse effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-25
    Description: Cognitive processes require working memory (WM) that involves a brief period of memory retention known as the delay period. Elevated delay-period activity in the medial prefrontal cortex (mPFC) has been observed, but its functional role in WM tasks remains unclear. We optogenetically suppressed or enhanced activity of pyramidal neurons in mouse mPFC during the delay period. Behavioral performance was impaired during the learning phase but not after the mice were well trained. Delay-period mPFC activity appeared to be more important in memory retention than in inhibitory control, decision-making, or motor selection. Furthermore, endogenous delay-period mPFC activity showed more prominent modulation that correlated with memory retention and behavioral performance. Thus, properly regulated mPFC delay-period activity is critical for information retention during learning of a WM task.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ding -- Gu, Xiaowei -- Zhu, Jia -- Zhang, Xiaoxing -- Han, Zhe -- Yan, Wenjun -- Cheng, Qi -- Hao, Jiang -- Fan, Hongmei -- Hou, Ruiqing -- Chen, Zhaoqin -- Chen, Yulei -- Li, Chengyu T -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):458-63. doi: 10.1126/science.1256573.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. University of Chinese Academy of Sciences, Beijing 100049, China. ; Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. tonylicy@ion.ac.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342800" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics/metabolism ; Learning/*physiology ; Luminescent Proteins/genetics/metabolism ; Male ; Memory, Short-Term/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Prefrontal Cortex/cytology/*physiology ; Pyramidal Cells/*physiology ; Reaction Time ; *Retention (Psychology) ; Rhodopsin/genetics/metabolism ; Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...