ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Precipitation in the central U.S. decreases by about 25% during the seasonal transition from June to July, and this precipitation decrease has been observed to have intensified since 1979. Such an intensification could enhance future spring drought occurrences such as was the case in the 2012 "flash drought" in the Midwestern U.S., where conditions evolved quickly from being abnormally dry to exceptionally dry within a mere month from June to July. In this study, various atmospheric and land reanalysis datasets were analyzed to examine the trend calculated from 1979 to 2012 in the June-to-July seasonal transition. It was found that the change in precipitation deficit was accompanied by increased downward shortwave radiation flux and tropospheric subsidence, enhanced evaporative fraction, as well as an elevated planetary boundary layer height. The change in the tropospheric circulation encompassed an anomalous ridge over the western U.S. and a trough on either side; this wave-form circulation pattern is known to induce dry conditions in the central U.S. Possibly, the trends in the June-to-July seasonal shifts in precipitation, drought severity and tropospheric circulation intensified the 2012 "flash drought" in timing and extent. The knowledge of the trends allows one to anticipate the evolution of spring onset of drought into the summer.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17680
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17681
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...