ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 91-94; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: An analysis of nadir reflectivity Fourier spatial power spectra and autocorrelation functions at solar wavelengths and for cloudy conditions has been carried out. The data come from Landsat Thematic Mapper (TM) observations, while Monte Carlo (MC) simulations are used to aid the interpretation of the Landsat results. We show that radiative processes produce consistent signatures on power spectra and autocorrelation functions. The former take a variety of forms not shown or explained in previous observational studies. We demonstrate that the TM spectra can potentially be affected by both radiative "roughening" at intermediate scales (approx. 1 -5 km), being more prevalent at large solar zenith angles, and the already documented radiative "smoothing" at small scales (less than 1 km). These processes are wavelength dependent, as shown by systematic differences between conservative (for cloud droplets) TM band 4 (approx. 0.8 microns) and absorbing band 7 (approx. 2.2 microns): band 7 exhibits more roughening and less smoothing. This is confirmed quantitatively by comparing least-squared fitted power spectral slopes for the two bands. It is also corroborated by a slower decrease with distance of autocorrelation function values for band 4 compared to band 7. The appearance of roughening at large solar zenith angles is a result of side illumination and shadowing and adds an additional complexity to the power spectra. MC spectra are useful in illustrating that scale invariant optical depth fields can produce complex power spectra that take a variety of shapes under different conditions. We show that radiative roughening increases with the decrease of single scattering albedo and with the increase of solar zenith angle (as in the observations). For high Sun there is also a clear shift of the radiative smoothing scale to smaller values as droplet absorption increases. The shape of the power spectrum is sensitive to the magnitude and type of cloud top height variability, with the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z 〉 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: There are several dozen papers that study the effects of cloud horizontal inhomogeneity on the retrievals of cloud optical thickness, but only a few of them deal with cloud droplet sizes. This paper is one of the first comprehensive attempts to fill this gap: It takes a close theoretical look at the radiative effects of cloud 3-D structure in retrievals of droplet effective radii. Under some general assumptions, it was found that ignoring subpixel (unresolved) variability produces a negative bias in the retrieved effective radius, while ignoring cloud inhomogeneity at scales larger than a pixel scale (resolved variability), on the contrary, leads to overestimation of the domain average droplet size. The theoretical results are illustrated with examples from Large Eddy Simulations (LES) of cumulus (Cu) and stratocumulus (Sc) cloud fields. The analysis of cloud drop size distributions retrieved from both LES fields confirms that ignoring shadowing in 1-D retrievals results in substantial overestimation of effective radii which is more pronounced for broken Cu than for Sc clouds. Collocated measurements of broken Cu clouds by Moderate Resolution Imaging Spectrometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) are used to check simulations and theory with observations. The analysis of ASTER and MODIS data and associated derived products recommends against blindly using retrieved effective radii for broken cloud fields, especially if one wants to relate aerosol amounts to cloud droplet sizes.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 111; D09207
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.
    Keywords: Meteorology and Climatology
    Type: AGU Fall 2003 Meeting; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Cloud radiative properties are sensitive to drop size and other parameters of cloud micro-structure, but also to cloud shape, spacing, and other parameters of cloud macro-structure, including internal fractal structure. New information on cloud structure is being derived from a variety of cloud radars and lidars. Ongoing field programs such as DoE/ARM are improving the measurement and modelling of physical and radiative properties of clouds. A parallel effort is underway to improve cloud remote sensing, especially from the new suite of EOS (Earth Observing System) instruments which are beginning to provide higher spectral, spatial resolution, and/or angular resolution. Key parameters for improving pixel-scale retrievals are cloud thickness and photon mean-free-path, which together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale has been observed as a change in the spatial spectrum of Landsat cloud radiances, and was also recently found with the Goddard micropulse lidar, by searching for returns from directions nonparallel to the incident beam. "Offbeam" Lidar returns are now being used to estimate the cloud "radiative Green's function", (G). G depends on cloud thickness and may be used to retrieve that important quantity. G is also being applied to improving simple estimates of cloud radiative properties that are based on the "Independent Pixel Approximation" or IPA. This and other measurements of 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are beginning to provide a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval and parameterization algorithms which take account of cloud inhomogeneity. An international "Intercomparison of 3D Radiation Codes" or I3RC, program is underway to coordinate and evaluate the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://climate.gsfc.nasa.gov/I3RC. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate the effects of cloud inhomogeneity and 3D radiation.
    Keywords: Meteorology and Climatology
    Type: Geosciences Workshop; Sep 25, 2001 - Sep 29, 2001; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.
    Keywords: Meteorology and Climatology
    Type: International Radiation Symposium; Jul 24, 2000 - Jul 29, 2000; Saint Petersburg; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5749.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: A decade ago, Stephens and Tsay provided an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. They summarized the available evidence that pointed to disagreements between theoretical and observed values of cloud absorption (and reflection). At that time, a theoretician's approach (assuming perfect flux measurements) was adopted to test the model uncertainty under various hypotheses, such as the omitted large drops, excess absorbing aerosols, enhanced water vapor continuum absorption, and cloud inhomogeneity. Since then, several advances in theoretical work have been made, but a satisfactory answer for the discrepancy is still lacking. Now, we offer an experimentalist's approach (focusing on field, not laboratory) to examine the observational uncertainty under numerous field factors, such as the temperature dependence, attitude control, and sampling strategy in the spatial and spectral domain. Examples from recent field campaigns have pointed out that these sources of error may be responsible for the unacceptable level of uncertainty (e.g., as large as 20 W/square m). We give examples of each, discuss their contribution to overall uncertainty in shortwave absorption, and suggest a coordinated approach to their solution.
    Keywords: Meteorology and Climatology
    Type: Chapman Conference on Atmospheric Absorption of Solar Radiation; Aug 13, 2001 - Aug 17, 2001; Estes Park, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...