ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (8)
  • 1
    Publication Date: 2019-07-13
    Description: Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8104 , Journal of Geophysical Research; 112; D20 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Cirrus clouds determine the radiative balance of the upper troposphere and the transport of water vapor across the tropopause.The representation of vertical wind velocity, W, in atmospheric models constitutes the largest source of uncertainty in the calculation of the cirrus formation rate. Using global atmospheric simulations with a spatial resolution of 7 kilometers we obtain for the first time a direct estimate of the distribution of W at the scale relevant for cirrus formation, validated against long-term observations at two different ground sites. The standard deviation in W, sigma (sub W), varies widely over the globe with the highest values resulting from orographic uplift and convection, and the lowest occurring in the Arctic. Globally about 90 of the simulated sigma (sub W) values are below 0.1 meters per second and about one in 10 (sup 4) cloud formation events occur in environments with sigma (sub W) greater than 0.8 meters per second. Combining our estimate with reanalysis products and an advanced cloud formation scheme results in lower homogeneous ice nucleation frequency than previously reported, and a decreasing average ice crystal concentration with decreasing temperature. These features are in agreement with observations and suggest that the correct parameterization of sigma (sub W) is critical to simulate realistic cirrus properties.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN44309 , Scientific Reports (e-ISSN 2045-2322); 7; 6840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to realistically represent ice crystal number concentrations. The parameterization of Barahona and Nenes (2009, hereafter BN09) allows the treatment of ice nucleation, taking into account the competition for water vapour between homogeneous and heterogeneous nucleation and pre-existing ice crystals in cold clouds. Furthermore, the influence of chemically-heterogeneous, polydisperse aerosols is considered via multiple ice nucleating particle spectra, which are included in the parameterization to compute the heterogeneously formed ice crystals. BN09 has been implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC results, BN09 produces fewer ice crystals in the upper troposphere but higher ice crystal number concentrations in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. The comparison with a climatological data set of aircraft measurements shows that BN09 used in the cirrus regime improves the model results and, therefore, is recommended for future EMAC simulations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64754 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 11; 10; 4021-4041
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8089 , Journal of Geophysical Research Atmospheres; 116; D9; D09203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-14
    Description: Heterogeneous ice nucleation initiated by particles immersed within droplets is likely the main pathway of ice formation in the atmosphere. Theoretical models commonly used to describe this process assume that it mimics ice formation from the vapor, neglecting interactions unique to the liquid phase. This work introduces a new approach that accounts for such interactions by linking the ability of particles to promote ice formation to the modification of the properties of water near the particle-liquid interface. It is shown that the same mechanism that lowers the thermodynamic barrier for ice nucleation also tends to decrease the mobility of water molecules, hence the ice-liquid interfacial flux. Heterogeneous ice nucleation in the liquid phase is thus determined by the competition between thermodynamic and kinetic constraints to the formation and propagation of ice. At the limit, ice nucleation may be mediated by kinetic factors instead of the nucleation work. This new ice nucleation regime is termed spinodal ice nucleation. Comparison of predicted nucleation rates against published data suggests that some materials of atmospheric relevance may nucleate ice in this regime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65544 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 23; 17,119-17,141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN41699 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 16; 4; 2611-2629
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Aerosol emissions modify the properties of clouds hence impacting climate. The aerosol indirect effect may have offset part of the global warming caused by anthropogenic greenhouse gas emissions during the industrial era. It however remains unclear whether the same effect is significant over time scales relevant for seasonal and weather climate prediction. Answering such a question has been difficult since most weather prediction systems lack a proper representation of the aerosol evolution and transport and their interaction with clouds. Even in advanced systems it is not clear to what extent cloud microphysical properties are predictable over subseasonal to seasonal time scales. Such an issue is addressed in this study. We use a set of 30 year, four ensemble member, 9 month lead hindcast simulations of the NASA GEOS seasonal prediction system (GEOS-S2S) to study the predictability of cloud droplet number concentration in warm stratocumulus clouds. The latest version GEOS-S2S system implements interactive aerosol as well as a two moment cloud microphysics scheme therefore it is suitable for studying the aerosol indirect effect on climate. Long term retrievals from the MODIS (Moderate Resolution Imaging Spectroradiometer) are used to validate the model predictions and assess its skill in predicting cloud droplet number concentration.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64182 , American Geophysical Union Fall Meeting (AGU 2018); Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Weather and climate models have long struggled to realistically simulate the Madden-Julian Oscillation (MJO). Here we present a significant improvement in MJO simulation in NASA's GEOS atmospheric model with the implementation of 2-moment microphysics and the UW shallow cumulus parameterization. Comparing ten-year runs (2007-2016) with the old (1mom) and updated (2mom+shlw) model physics, the updated model has increased intra-seasonal variance with increased coherence. Surface fluxes and OLR are found to vary more realistically with precipitation, and a moisture budget suggests that changes in rain reevaporation and the cloud longwave feedback help support heavy precipitation. Preliminary results also show improved MJO hindcast skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50425 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...