ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Meteorology and Climatology  (8)
  • cancer vaccines  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1573-4986
    Schlagwort(e): cancer vaccines ; glycopeptides ; MUC-1 ; Immunotherapy
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Translation of an immune response into therapy is probably the toughest task in designing vaccines for cancer due to the heterogeneity of the cell surface antigens which display tremendous variations in glycoforms. Consequently, a small segment (antigen) of the cancer-associated mucin, in spite of generating antigen-specific immune responses, may be limited in therapeutic value. It is important that the synthetic segment resembles the native cancer-associated mucin in both structure and conformation. Synthetic cancer associated mucin derived 16 amino acid peptide GVTSAPDTRAPAPGSTA and its partially glycosylated forms have demonstrated specific binding to two monoclonal antibodies, B27.29 and BCP8, raised against the native cancer associated mucin, MUC-1 and a MUC-1 derived synthetic peptide, respectively. In spite of the structural similarities at the core peptide level of both glycosylated and unglycosylated peptides, it appears that partial glycosylation does not inhibit and even slightly enhances binding to the MAb B27.29 indicating that the glycosylated synthetic peptide more closely resembles the native mucin epitope recognized by MAb B27.29. From molecular dynamic simulations using NMR derived distance constraints, both glycosylated and unglycosylated peptides have shown a type I β turn involving the same amino acids in both glycosylated and unglycosylated peptides. The αGalNAc attached to the threonine (T3) and serine (S4) in the 16 amino acid sequence has not imposed any conformational changes to the peptide backbone nor has offered severe steric resistance to the binding of either antibody to the glycopeptides as indicated by hapten inhibition studies. Nevertheless, all peptides have displayed glycosylation dependent specificities in binding to these antibodies, i.e. the glycosylated peptides demonstrated relative higher affinities to the native mucin antibody B27.29 while the unglycosylated peptide is more specific to the MAb BCP8. Immune responses generated by these synthetic glycopeptides are highly specific in recognizing the native cancer associated mucin.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN8104 , Journal of Geophysical Research; 112; D20 27
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-19
    Beschreibung: Global aerosol mass and optical thickness (AOT) simulated by two aerosol models (GOCART and GMI-UMich) are evaluated and the strengths and shortcomings of the model approaches are investigated. These two offline CTM models are driven by the same meteorological fields (NASA GEOS-4), use the same dynamic transport algorithm, and have the same spatial resolution. However, they differ partially in emission, dry/wet deposition, and chemistry. The simulated aerosol masses are evaluated by the surface long-term measurements and short-term field campaigns (ACE-Asia and TRACE-P). AOT are calculated using modeled aerosol mass but externally mixed for GOCART and partially internally mixed for GMI-Mich. These AOT are evaluated using satellite observations from MODIS and MISR and ground measurements from AERONET. Our work demonstrates that there are significant differences in simulated aerosol mass and AOT by the two approaches. Further investigation will be performed to evaluate each mechanism which induces the differences quantitatively by implementing GOCART-like emission, deposition, and chemistry into GMI framework.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Spring 3006 AGU Meeting; 21 Mar. 2006; Baltimore, MD; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-12
    Beschreibung: One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC.JA.6374.2012
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-08
    Beschreibung: A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters 〉 50 and 〉 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (〈 0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN(0.2)) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN70776 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 13; 8591-8617
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: The Cirrus Parcel Model Comparison (CPMC) project, a project of the GEWEX Cloud System Study Working Group on cirrus clouds (GCSS WG2), is an international effort to advance our knowledge of numerical simulations of cirrus cloud initiation. This project was done in two phases. In Phase 1 of CPMC, the critical components determining the predicted cloud microphysical properties were identified using parcel models in which the aerosol and ice crystal size distributions are explicitly resolved, the formulation of the homogeneous freezing of aqueous solution droplets, especially the gradient of nucleation rate with respect to solution concentration; aerosol growth modeling; and the mass accommodation coefficient of water vapor on ice surface (the deposition coefficient). In Phase 1, all simulations were conducted using a given background aerosol distribution. To complete the comparison study, participant model responses to a range of background aerosol distributions are investigated in Phase 2.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 11th Conference on Cloud Physics; Jun 03, 2002 - Jun 07, 2002; Ogden, UT; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.
    Schlagwort(e): Meteorology and Climatology
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-13
    Beschreibung: Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).
    Schlagwort(e): Meteorology and Climatology
    Materialart: NF1676L-25321 , Journal of Geophysical Research: Atmospheres; 122; 5; 2844-2866
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-11-02
    Beschreibung: Fire emissions are critical for carbon and nutrient cycles, climate, and air quality. Dynamic Global Vegetation Models (DGVMs) with interactive fire modeling provide important estimates for long-term and large-scale changes of fire emissions. Here we present the first multi-model estimates of global gridded historical fire emissions for 1700-2012, including carbon and 33 species of trace gases and aerosols. The dataset is based on simulations of nine DGVMs with different state-of-the-art global fire models that participated in the Fire Modeling Intercomparison Project (FireMIP), using the same and standardized protocols and forcing data, and the most up-to-date fire emission factor table from field and laboratory studies over various land cover types. We evaluate the simulations of present-day fire emissions by comparing them with satellite-based products. Evaluation results show that most DGVMs simulate present-day global fire emission totals within the range of satellite-based products, and can capture the high emissions over the tropical savannas, low emissions over the arid and sparsely vegetated regions, and the main features of seasonality. However, most of the models fail to simulate the interannual variability, partly due to a lack of modeling peat fires and tropical deforestation fires. Historically, all models show only a weak trend in global fire emissions before ~1850s, consistent with multi-source merged historical reconstructions. The long-term trends among DGVMs are quite different for the 20th century, with some models showing an increase and others a decrease in fire emissions, mainly as a result of the discrepancy in their simulated responses to human population density change and land-use and land-cover change (LULCC). Our study provides a basic dataset for developing regional and global multi-source merged historical reconstructions and merging methods, and analyzing historical changes of fire emissions and their uncertainties as well as their role in the Earth system. It also highlights the importance of accurately modeling the responses of fire emissions to LULCC and population density change in reducing uncertainties in historical reconstructions of fire emissions and providing more reliable future projections.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN74255 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 19; 12545–12567
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...