ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Man/System Technology and Life Support  (6)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019-07-12
    Beschreibung: NASA's Human Research Program (HRP) funds research efforts aimed at mitigating various human health and performance risks, including the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI). As such, within HRP, the Human Factors and Behavioral Performance (HFBP) Element tasked an evaluation of future HARI needs in order to scope and focus the HARI risk research plan. The objective was to provide a systematic understanding of the critical factors associated with effective HARI that will be necessary to achieve the future mission goals for near- and deep-space exploration. Future mission goals are specified by NASA Design Reference Missions (DRMs) that are pertinent to the HRP. The outcome of this evaluation is a set of NASA-relevant HARI tasks, factors, and interactions required for exploration-class missions.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: NASA/TM-2017-219516 , ARC-E-DAA-TN40802
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: No abstract available
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: JSC-E-DAA-TN58060 , TASI (Thales Alenia Space Italia) presentation; Jun 29, 2018; Rome; Italy
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: There are currently no established standards or guidelines that define the functions to be present in habitats for use beyond Low Earth Orbit (LEO), or for the capabilities of those functions. There is limited human experience with long duration space habitation, none of which is beyond LEO. There is significantly less experience with even short duration human habitation beyond LEO. Studies since the Apollo program that have proposed long duration habitats have applied inconsistent functionality, yet these functions have substantial implications for spacecraft mass and volume. There are also numerous aspects of human space flight beyond LEO that have implications for these functions. This paper develops a method for design teams to identify and justify the functions and capabilities to include in long duration habitats intended for use beyond LEO. Finally, human-in-the-loop testing methods are recommended for use in the early spacecraft design stages to ensure that the habitat will successfully provide the intended functions and capabilities.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: JSC-E-DAA-TN59666 , Space and Astronautics Forum (AIAA SPACE Forum 2018); Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-19
    Beschreibung: As future space missions become longer, an important aspect to consider is the habitability of the spacecraft. The amount of habitable volume affects not only astronaut comfort, but safety and mission success as well. However, as the volume is increased to aid in task performance, the weight of the vehicle and cost of the mission escalates in proportion. Pressure to reduce mission cost is constant, but the risk to mission success and crew survival must remain the priorities. The Constellation Program's Altair Lunar Lander is designed for short duration surface operation missions of seven to ten days. For short duration missions, humans will tolerate fairly primitive environmental situations provided the basic physiological arrangements are acceptable. However, for long-duration lunar surface operations, the living and operational spaces within which the crew work must provide both the essentials of life, as well as the support necessary for the crew to be productive in accomplishing their mission. The Altair is still in the preliminary design phase, which is the optimal time for Human Factors data to be provided to designers and engineers. A Human Centered Design (HCD) approach is being taken with our Human Factors evaluations. Human-in-the-loop testing is conducted using low-medium fidelity mock-ups of proposed lunar architecture. Based on current ConOps (Concept of Operations) procedures, a task analysis is performed in which individual tasks are combined into larger operational scenarios. Subjective and objective performance measures are gathered at both the task and scenario level. These scores are used to determine the functionality of the vehicle in terms of task performance. Results from these evaluations will highlight areas for design or operational improvement.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: 80th Annual Scientific Meeting of the Aerospace Medical Association; May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-12
    Beschreibung: A stowage system was conceived that consists of collapsible, reconfigurable stowage bags, rigid polyethylene or metal inserts, stainless-steel hooks, flexible photovoltaic materials, and webbing curtains that provide power generation, thermal stabilization, impact resistance, work/sleeping surfaces, and radiation protection to spaceflight hardware and crew members. Providing materials to the Lunar surface is costly from both a mass and a volume standpoint. Most of the materials that will be transferred to other planets or celestial bodies will not be returned to the Earth. In developing a plan to reconfigure pressurized logistics modules, it was determined that there was a requirement to be able to utilize the interior volume of these modules and transform them from Logistics Modules to Storage/Living Quarters. Logistics-to-living must re-utilize stowage bags and the structures that support them to construct living spaces, partitions, furniture, protective shelters from solar particle events, galactic cosmic radiation, and workspaces. In addition to reusing these logistics items for development of the interior living spaces, these items could also be reused outside the habitable volumes to build berms that protect assets from secondary blast ejecta, to define pathways, to stabilize high traffic areas, to protect against dust contamination, to secure assets to mobility elements, to provide thermal protection, and to create other types of protective shelters for surface experiments. Unique features of this innovation include hydrogen-impregnated nano fibers encapsulated in a polyethelyne coating that act as radiation shielding, flexible solar collection cells that can be connected together with cells from other bags via the webbing walls to create a solar array, and the ability to reconfigure each bag to satisfy multiple needs.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: MSC-24624-1 , NASA Tech Briefs, November 2012; 17
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper discusses configurations and test analogs toward the design of a virtual window capability in a Deep Space Habitat. Long-duration space missions will require crews to remain in the confines of a spacecraft for extended periods of time, with possible harmful effects if a crewmember cannot cope with the small habitable volume. Virtual windows expand perceived volume using a minimal amount of image projection equipment and computing resources, and allow a limited immersion in remote environments. Uses for the virtual window include: live or augmented reality views of the external environment; flight deck, piloting, observation, or other participation in remote missions through live transmission of cameras mounted to remote vehicles; pre-recorded background views of nature areas, seasonal occurrences, or cultural events; and pre-recorded events such as birthdays, anniversaries, and other meaningful events prepared by ground support and families of the crewmembers.
    Schlagwort(e): Man/System Technology and Life Support
    Materialart: International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...