ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-28
    Description: Embryonic stem (ES) cells are fully pluripotent in that they can differentiate into all cell types, including gametes. We have derived 35 ES cell lines via nuclear transfer (ntES cell lines) from adult mouse somatic cells of inbred, hybrid, and mutant strains. ntES cells contributed to an extensive variety of cell types, including dopaminergic and serotonergic neurons in vitro and germ cells in vivo. Cloning by transfer of ntES cell nuclei could result in normal development of fertile adults. These studies demonstrate the full pluripotency of ntES cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakayama, T -- Tabar, V -- Rodriguez, I -- Perry, A C -- Studer, L -- Mombaerts, P -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):740-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, New York, NY 10021, USA. teru@advancedcell.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*cytology ; *Cell Differentiation ; Cell Line ; Cell Lineage ; Chimera ; Cloning, Organism ; Crosses, Genetic ; Dopamine/metabolism ; Embryo Transfer ; Female ; Germ Cells/*cytology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Inbred ICR ; Mice, Nude ; Neurons/*cytology ; *Nuclear Transfer Techniques ; Serotonin/metabolism ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-15
    Description: Coinjection of unfertilized mouse oocytes with sperm heads and exogenous DNA encoding either a green fluorescent protein (GFP) or beta-galactosidase reporter produced 64 to 94 percent transgene-expressing embryos, reflecting DNA-sperm head association before coinjection. Nonselective transfer to surrogate mothers of embryos in the GFP series generated about 20 percent offspring expressing the integrated transgene. These data indicate that exogenous DNA can reproducibly be delivered into an oocyte by microinjected spermatozoa and suggest an adaptable method of transgenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, A C -- Wakayama, T -- Kishikawa, H -- Kasai, T -- Okabe, M -- Toyoda, Y -- Yanagimachi, R -- HD-34362/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 May 14;284(5417):1180-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu, HI 96822, USA. perry@hawaii.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/physiology ; Cell Membrane/physiology ; Culture Techniques ; Embryo Transfer ; Embryonic and Fetal Development ; Female ; *Fertilization in Vitro ; *Gene Transfer Techniques ; Genes, Reporter ; Green Fluorescent Proteins ; Lac Operon ; Luminescent Proteins/genetics ; Male ; Mice ; *Mice, Transgenic/embryology/genetics ; Microinjections ; Morula/physiology ; Oocytes ; Sperm Head/*physiology ; *Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-08
    Description: The life cycle of mammals begins when a sperm enters an egg. Immediately after fertilization, both the maternal and paternal genomes undergo dramatic reprogramming to prepare for the transition from germ cell to somatic cell transcription programs. One of the molecular events that takes place during this transition is the demethylation of the paternal genome. Despite extensive efforts, the factors responsible for paternal DNA demethylation have not been identified. To search for such factors, we developed a live cell imaging system that allows us to monitor the paternal DNA methylation state in zygotes. Through short-interfering-RNA-mediated knockdown in mouse zygotes, we identified Elp3 (also called KAT9), a component of the elongator complex, to be important for paternal DNA demethylation. We demonstrate that knockdown of Elp3 impairs paternal DNA demethylation as indicated by reporter binding, immunostaining and bisulphite sequencing. Similar results were also obtained when other elongator components, Elp1 and Elp4, were knocked down. Importantly, injection of messenger RNA encoding the Elp3 radical SAM domain mutant, but not the HAT domain mutant, into MII oocytes before fertilization also impaired paternal DNA demethylation, indicating that the SAM radical domain is involved in the demethylation process. Our study not only establishes a critical role for the elongator complex in zygotic paternal genome demethylation, but also indicates that the demethylation process may be mediated through a reaction that requires an intact radical SAM domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Yuki -- Yamagata, Kazuo -- Hong, Kwonho -- Wakayama, Teruhiko -- Zhang, Yi -- R01 GM068804/GM/NIGMS NIH HHS/ -- R01 GM068804-07/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):554-8. doi: 10.1038/nature08732. Epub 2010 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chapel Hill, North Carolina 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; *DNA Methylation ; Embryonic Development/*genetics ; Female ; Gene Knockdown Techniques ; Genome/*genetics ; Histone Acetyltransferases/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Protein Structure, Tertiary/genetics ; Zygote/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-31
    Description: Here we report a unique cellular reprogramming phenomenon, called stimulus-triggered acquisition of pluripotency (STAP), which requires neither nuclear transfer nor the introduction of transcription factors. In STAP, strong external stimuli such as a transient low-pH stressor reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells. Through real-time imaging of STAP cells derived from purified lymphocytes, as well as gene rearrangement analysis, we found that committed somatic cells give rise to STAP cells by reprogramming rather than selection. STAP cells showed a substantial decrease in DNA methylation in the regulatory regions of pluripotency marker genes. Blastocyst injection showed that STAP cells efficiently contribute to chimaeric embryos and to offspring via germline transmission. We also demonstrate the derivation of robustly expandable pluripotent cell lines from STAP cells. Thus, our findings indicate that epigenetic fate determination of mammalian cells can be markedly converted in a context-dependent manner by strong environmental cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obokata, Haruko -- Wakayama, Teruhiko -- Sasai, Yoshiki -- Kojima, Koji -- Vacanti, Martin P -- Niwa, Hitoshi -- Yamato, Masayuki -- Vacanti, Charles A -- England -- Nature. 2014 Jan 30;505(7485):641-7. doi: 10.1038/nature12968.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Laboratory for Cellular Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan [3] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; 1] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan [2] Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan. ; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Pathology, Irwin Army Community Hospital, Fort Riley, Kansas 66442, USA. ; Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo 162-8666, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476887" target="_blank"〉PubMed〈/a〉
    Keywords: Acids/*pharmacology ; Animals ; Antigens, CD45/metabolism ; Cell Dedifferentiation/drug effects ; Cell Proliferation ; Cellular Reprogramming/*drug effects ; Chimera/metabolism ; DNA Methylation/drug effects ; Embryonic Stem Cells/cytology/metabolism ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Hydrogen-Ion Concentration ; Induced Pluripotent Stem Cells/*cytology/*drug effects/metabolism ; Lymphocytes/cytology/drug effects/metabolism ; Male ; Mice ; Mice, Inbred ICR ; Octamer Transcription Factor-3/metabolism ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...