ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The strategy for locating and sampling possible fossilized Martian organisms benefits from our experience with fossil microbial ecosystems on Earth. Evidence of early life is typically preserved as stromatolites in carbonates and cherts, and as microfossils in cherts, carbonates and shales. Stromatolites, which are laminated flat or domal structures built by microbial communities, are very likely the oldest and most widespread relics of early life. These communities flourished in supratidal to subtidal coastal benthic environments, wherever sunlight was available and where incoming sediments were insufficient to bury the communities before they became established. A logical site for such communities on Mars might be those areas in an ancient lake bed which were furthest from sediment input, but were still sufficiently shallow to have received sunlight. Therefore, although some sites within Valles Marineris might have contained ponded water, the possibly abundant sediment inputs might have overwhelmed stromatolite-like communities. Localized depressions which acted as catchment basins for ancient branched valley systems might be superior sites. Perhaps such depressions received drainage which, because of the relatively modest water discharges implied for these streams, was relatively low in transported sediment. Multiple streams converging on a single basin might have been able to maintain a shallow water environment for extended periods of time.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on Mars Sample Return Science; p 67-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it undoubtedly left behind a fossil record. Such a fossil record is likely to be more accessible than either subsurface environments that may harbor life, or scattered 'oases' that may be present at the surface. Consequently, the post-Viking approach of Mars exobiology has shifted focus to search for evidence of an ancient martian biosphere. This has led to the emergence of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets and whose core concepts derive from Earth-based Precambrian paleontology, microbial ecology, and sedimentology. Potential targets on Mars for subaqueous spring deposits, sedimentary cements, and evaporites are ancient terminal lake basins where hydrological systems could have endured for some time under arid conditions. Potential targets for the Mars Pathfinder mission include channeled impact craters and areas of deranged drainage associated with outflows in northwest Arabia and Xanthe Terra, where water may have ponded temporarily to form lakes. The major uncertainty of such targets is their comparatively younger age and the potentially short duration of hydrological activity compared to older paleolake basins found in the southern hemisphere. However, it has been suggested that cycles of catastrophic flooding associated with Tharsis volcanism may have sustained a large body of water, Oceanus Borealis, in the northern plains area until quite late in martian history. Although problematic, the shoreline areas of the proposed northern ocean provide potential targets for a Mars Pathfinder mission aimed at exploring for carbonates or other potentially fossiliferous marine deposits. Carbonates and evaporites possess characteristic spectra signatures in the near-infrared and should be detectable using rover-based spectroscopy and other methods for in situ mineralogical analysis.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Mars Pathfinder Landing Site Workshop; p 26-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...