ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (6)
  • Silicon cycle  (2)
  • 111-504B; 140-504B; 148-504B; 52-417D; 69-504B; 70-504B; 83-504B; Caesium; Deep Sea Drilling Project; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Glomar Challenger; Isotope dilution; Joides Resolution; Leg111; Leg140; Leg148; Leg52; Leg69; Leg70; Leg83; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Thallium; ε-Thallium-205  (1)
Collection
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nielsen, Sune G; Rehkämper, Mark; Teagle, Damon A H; Butterfield, David A; Alt, Jeffrey C; Halliday, Alex N (2006): Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth and Planetary Science Letters, 251(1-2), 120-133, https://doi.org/10.1016/j.epsl.2006.09.002
    Publication Date: 2024-01-09
    Description: Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater. The calculated high temperature hydrothermal water flux is (0.17-2.93)*10**13 kg/yr with a best estimate of 0.72*10**13 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids.The residual thermal energy ismost likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust. The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2-5.4)*10**17 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.
    Keywords: 111-504B; 140-504B; 148-504B; 52-417D; 69-504B; 70-504B; 83-504B; Caesium; Deep Sea Drilling Project; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Glomar Challenger; Isotope dilution; Joides Resolution; Leg111; Leg140; Leg148; Leg52; Leg69; Leg70; Leg83; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Thallium; ε-Thallium-205
    Type: Dataset
    Format: text/tab-separated-values, 75 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 302 (2011): 253-254, doi:10.1016/j.epsl.2010.12.023.
    Description: The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.
    Description: Cruise NBP0805 was funded by NSF Office of Polar Programs (OPP) Antarctic Sciences (grant number ANT-0636787). Data from the Palmer LTER data archive were supported by Office of Polar Programs, NSF grants OPP-9011927, OPP-9632763 and OPP-0217282. The work was funded by the Natural Environment Research Council (NERC) grant NE/F005296/1 and an Antarctic Science Bursary.
    Keywords: Porifera ; Spicule ; Silicic acid ; Deep-water ; Silicon cycle ; Glacial
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 292 (2010): 290-300, doi:10.1016/j.epsl.2010.02.005.
    Description: The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concur rent reduction in diatom silicification or a shift from siliceous to organic walled phytoplankton.
    Description: Cruise NBP0805 was funded by NSF Office of Polar Programs (OPP) Antarctic Sciences (grant number ANT-0636787). Data from the Palmer LTER data archive were supported by Office of Polar Programs, NSF grants OPP-9011927, OPP-9632763 and OPP-0217282. The work was funded by the Natural Environment Research Council (NERC) grant NE/F005296/1 and an Antarctic Science Bursary.
    Keywords: Porifera ; Spicule ; Silicic acid ; Deep-water ; Silicon cycle ; Glacial
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Implicit in current understanding of the location of terrestrial enriched and depleted reservoirs is the notion that they are spatially separated. The depleted reservoir on Earth is situated in the upper mantle, and the complementary enriched reservoir is located in the crust. However, Earth reservoirs are continually being modified by recycling driven by mantle convection. The Moon is demonstrably different from Earth in that its evolution was arrested relatively early - effectively with 1.5 Ga of its formation. It is possible that crystallized trapped liquids (from the late stages of a magma ocean) have been preserved as LILE-enriched portions of the lunar mantle. This would lead to depleted (cumulate) and enriched (magma ocean residual liquid) reservoirs in the lunar upper mantle. There is no evidence for significant recycling from the highland crust back into the mantle. Therefore, reservoirs created at the Moon's inception may have remained intact for over 4.0 Ga. The topics discussed include the following: (1) radiogenic isotopes in high-Ti mare basalts; (2) formation of cogenetic depleted and enriched reservoirs; and (3) melting of the source to achieve high-Ti mare basalts.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Science Inst., Workshop on Geology of the Apollo 17 Landing Site; p 53-55
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: Breccias from the Apollo 14 landing site have provided a wealth of information on the genesis of the lunar highlands. Various pristine rock-types have been discovered in relative abundance including rare ferroan anorthosites and alkali-suite and magnesian-suite rocks. Mineral-chemical and radiogenic isotopic data are reported here for a newly discovered Mg-suite anorthosite from Apollo 14, sample 14303,347. Meyer et al. reported U-Pb zircon analyses of Mg-suite highlands rocks from the western limb of the Moon. We have compiled these ages and generated a weighted average age of 4211 = 6 Ma; some 200 Ma younger than ferroan anorthosites. Utilizing this age for Mg-anorthosite 14303,347, our data results in an initial epsilon(sub Nd) value of -1.0 and initial Sr-87/Sr-86 of 0.69915. Based on trace-element, isotopic, and mineral-chemical data, the western highlands Mg-suite is interpreted to be crustal precipitates of a picritic magma, which assimilated KREEPy trapped liquid from upper-mantle cumulates during its transport to the crust.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1327-1328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: An understanding of the chronology and petrogenesis of volcanic rocks is paramount to unravelling the complexities of the composition and structure of the mantle of the Moon. High-Ti mare basalts represent the best-sampled suite of lunar volcanic rocks and likely represent melts of the uppermost mantle of the Moon. Compiled Nd and Sr isotopic data for high-Ti basalts, combined with weighted average ages determiend by various techniques, yield a complex melting history for the high-Ti mantle source. Melting occurred during three distinct episodes (3.84 Ga, 3.75-3.69 Ga, and 3.56 Ga) separated by hiatuses of 100 Ma or more. The first episode included the melting of a relatively trapped liquid (KREEPy)-rich source beneath the A-11 landing site. Later melting of this source produced magmas which were relatively trapped liquid-free at the A-11 site. Synchronous melting at the A-17 landing site produced magmas with variable proportions of this evolved trapped liquid component. The final phase of volcanism occurred at the A-11 site and involved the assimilation of an evolved 'neuKREEP' component. Continued melting of a similar source, which was nearly exhausted of its ilmenite component, beneath the A-12 landing site may have lead to production of magmas parental to the A-12 ilmenite basalts.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1323-1324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1325-1326
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The earliest evolution of the Moon likely included the formation of a magma ocean and the subsequent development of anorthositic flotation cumulates. This primary anorthositic crust was then intruded by mafic magmas which crystallized to form the lunar highlands magnesian suite. The present study is a compilation of petrologic, mineral-chemical, and geochemical information on all pristine magnesian-suite plutonic rocks and the interpretation of this data in light of 18 'new' samples. Of these 18 clasts taken from Apollo 14 breccias, 12 are probably pristine and include four dunites, two norites, four troctolites, and two anorthosites. Radiogenic isotopic whole rock data also are reported for one of the 'probably pristine' anorthositic troctolites, sample 14303,347. The relatively low Rb content and high Sm and Nd abundances of 14303,347 suggest that this cumulate rock was derived from a parental magma which had these chemical characteristics. Trace element, isotopic, and mineral-chemical data are used to interpret the total highlands magnesian suite as crustal precipitates of a primitive KREEP (possessing a K-, rare earth element (REE)-, and P-enriched chemical signature) basalt magma. This KREEP basalt was created by the mixing of ascending ultramafic melts from the lunar interior with urKREEP (the late, K-, REE-, and P-enriched residuum of the lunar magma ocean). A few samples of the magnesian suite with extremely elevated large-ion lithophile elements (5-10x other magnesian-suite rocks) cannot be explained by this model or any other model of autometasomatism, equilibrium crystallization, or 'local melt-pocket equilibrium' without recourse to an extremely large-ion lithophile element-enriched parent liquid. It is difficult to generate parental liquids which are 2-4 x higher in the REE than average lunar KREEP, unless the liquids are the basic complement of a liquid-liquid pair, i.e., the so-called 'REEP-fraction,' from the silicate liquid immiscibility of urKREEP. Scarce age information on lunar rocks suggests that magnesian-suite magmatism was initiated at progressively more recent time from the northeast to the southwest on the lunar nearside from 4.45 to 4.25 Ga.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E5; p. 9365-9388
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The geochronological and compositional differences between previously identified magma types (A, B1, B2, and C) were investigated using high-precision Rb-Sr and Sm-Nd isotopic data for a set of Apollo 17 high-Ti mare basalt samples chosen to span the range of each of the magma types. These data, combined with previously reported geochemical ages, suggest that Apollo 17 volcanism was initially dominated by an eruption of Type B basalts. Data obtained from new whole-rock Sr and Nd isotopic analyses exhibited distinct differences in initial Sr and Nd isotopic compositions between Types A, B1, B2, and C basalts and were found to be consistent with existing petrogenetic models.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 55; 2025-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...