ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Arsenic  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 39 (2000), S. 753-759 
    ISSN: 1432-0495
    Keywords: Key words Arsenic ; Natural attenuation ; Remediation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very little experimental work has addressed the arsenic attenuation capacities of different clay minerals and aging process affecting the transformation of arsenic. The abundance of clay minerals in a variety of geochemical environments and their influence on adsorption of contaminants suggests a need for more experimental work to characterize the adsorption desorption, and oxidation of arsenic on clay minerals. In this investigation three types of clay mineral were studied: the 1 : 1 layer clays [halloysite (IN), sedimentary M-kaolinite, and weathered EPK-kaolinite]; the 2 : 1 layer clays [illite (MT) and illite/montmorillonite (MT)]; the 2 :〉: 1 layer clay [chlorite (CA)]. The halloysite and the chlorite had much greater As(V) adsorption (25–35 folds) than the other clay minerals. The clay minerals had lower As(III) adsorption than As(V) adsorption, and the adsorption was affected by pH. Desorption of arsenic from the clay minerals was significantly influenced by the aging process. The quantities of extractable As(III) and As(V) decreased with increasing aging time. The results demonstrated that oxidation of As(III) to As(V) occurred on the clay surfaces, whereas reduction of As(V) to As(III) was not found in any of the clay minerals studied. The oxidation of As(III) was affected by the types of clay and aging time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...