ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 1015-1031 
    ISSN: 0271-2091
    Keywords: Non-Newtonian fluids ; Memory integral constitutive equations ; Polymer melts ; K-BKZ model ; Entry flow ; Vortex growth ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...