ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-10-30
    Description: Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 41; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Europa Lander Missions, Science, and Instrumentation; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Anti-Coincidence Detector (ACD) is the outermost detector layer in the GLAST Large Area Telescope (LAT), surrounding the top and sides of the tracker. The purpose of the ACD is to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly charged relativistic particles, but must also have low sensitivity to backsplash particles. These are products of high- energy interactions in the LAT calorimeter. They can cause a veto signal in the ACD, resulting in loss of good gamma-ray events.
    Keywords: Instrumentation and Photography
    Type: 29th International Cosmic Ray Conference; Aug 03, 2005 - Aug 10, 2005; Pune; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...