ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A nitrogen-water vapor mixture simulating hydrogen-air combustion products was produced and expanded in the nozzle of the 16-inch Combustion-Driven Shock Tunnel at NASA Ames Research Center. The measured OH concentrations are smaller than those calculated by the conventional one-temperature reaction model even when the reaction rate coefficients are multiplied by a factor of 10. The values calculated by a two-temperature model bound the experimental values under one operating condition, but fail to do so in the other. The discrepancy between experiment and calculation is unresolved.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: AIAA PAPER 90-1751
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: AIAA PAPER 88-2714
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: AIAA PAPER 89-1740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...