ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,
    Keywords: Geosciences (General)
    Type: AGU Meeting; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This study advances the previous understanding of the role of climate variability on Indonesian fire activity, by considering (i) the presence of different types of El Nio and (ii) the interaction between El Nio and the Indian Ocean Dipole (IOD). We classify 12 El Nio events during 1979-2016 into Eastern Pacific (EP) and Central Pacific (CP) types (four and eight El Nio events, respectively) and analyze observational data of sea surface temperature, precipitation, drought code, biomass burning carbon emission, visibility, and aerosol optical depth accordingly. We find that more intense and prolonged Indonesian drought and fires occur in the EP type, during which the emitted carbon amounts almost double those in the CP type. By further separating the CP type El Nio according to the phase of the IOD, that is, positive and negative, we show that fire seasons with less burning intensity and shorter duration are predominantly associated with weakly positive or even negative phase of the IOD phenomena. Moreover, fire intensity exhibits geographic diversity: fires are always more intensive in southern Kalimantan than in southern Sumatra in all El Nio events, although it is less dry in the former region. The outcome of this study can be applied to drought early warning, fire management, and air quality forecast in Indonesia and adjacent areas by identifying the type of El Nio and the phase of the IOD in advance.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN60982 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 15; 7974-7988
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Massive dust emitted from North Africa can transport long distances across the tropical Atlantic Ocean, reaching the Americas. Dust deposition along the transit adds microorganisms and essential nutrients to marine ecosystem, which has important implications for biogeochemical cycle and climate. However, assessing the dust-ecosystemclimate interactions has been hindered in part by the paucity of dust deposition measurements and large uncertainties associated with oversimplified representations of dust processes in current models. We have recently produced a unique dataset of seasonal dust deposition flux and dust loss frequency into the tropical Atlantic Ocean at a nominal resolution of 200 km x 500 km by using the decade-long (2007-2016) record of aerosol three-dimensional distribution from four satellite sensors, namely CALIOP, MODIS, MISR, and IASI. On the basis of the ten-year average, the yearly dust deposition into the tropical Atlantic Ocean is estimated at 98-153 Tg. The dust deposition shows large spatial and temporal (on seasonal and interannual scale) variability. The satellite observations also yield an estimate of annual mean dust loss frequency of 0.052 ~ 0.078 d-1, a useful diagnostic that makes it possible to disentangle the dust transport and removal processes from the dust emissions when identifying the major factors contributing to the uncertainties and biases in the model simulated dust deposition. In this study, we use the dataset along with in situ and remote sensing observations to assess how well NASA GEOS model performs in simulating trans-Atlantic dust transport and deposition. We found that the GEOS modeling of dust deposition falls within the range of satellite-based estimates. However, this reasonable agreement in dust deposition is a compensation of the model's underestimate of dust emissions and overestimate of dust removal efficiency. Further, the overestimate of dust removal efficiency results largely from the model's overestimate of rainfall rate. Our results provide insights into the model's deficiencies at process level, which could better guide model improvements.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN70551 , COAA International Conference on Atmosphere, Ocean, and Climate Change (ICAOCC); Jul 10, 2019 - Jul 12, 2019; Nanjing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41444 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 9; 5; 1905-1919
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41569 , Atmospheric Environment (ISSN 1352-2310); 148; 282-296
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter DRE(sub SUR) = 28 +/- 12 W m(exp 2) and DRE(sub ATM) = +19.6 +/- 9 W m(exp 2) to spring DRE(sub SUR) = 33.7 +/- 12 W m(exp 2) and DRE(sub ATM) = +27 +/- 9 W m(exp2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as approximately 1 K day(exp -1) during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 +/- 7 W m(exp 2) during spring overwhelms that of black carbon DRE (+11.8 +/- 6 W m(exp -2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41571 , Climate Dynamics (ISSN 0930-7575) (e-ISSN 1432-0894); 18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Asia's rapid economic growth over the past several decades has brought a remarkable increase in air pollution levels in that region. High concentrations of aerosols (also known as particulate matter or PM) from pollution sources pose major health hazards to half of the world population in Asia including South Asia. How do pollution and dust aerosols regulate the monsoon circulation and rainfall via scattering and absorbing solar radiation, changing the atmospheric heating rates, and modifying the cloud properties? We conducted a series of regional model experiments with NASA-Unified Weather Research and Forecast (NUWRF) regional model with coupled aerosol-chemistry-radiation-microphysics processes over South Asia for winter, pre-monsoon, and monsoon seasons to address this question. This study investigates the worsening air quality problem in South Asia by focusing on the interactions between pollution and South Asian monsoon, not merely focusing on the increase of pollutant emissions.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55875 , American Meteorological Society Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...