ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-09
    Description: The process of nitric oxide formation during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source in a uniform flow with a continuum regime evolving in its wake. The amount of nitric oxide produced by high-temperature reactions of air in the continuum regime is calculated by numerical integration of chemical-rate equations. This is accomplished by assuming that flow properties are constant across the reacting region, the radius of the region being determined from considerations of shock-wave formation and molecular diffusion. The results, when summed over the observed mass, velocity, and entry-angle distributions of meteoroids, provide annual global production rates of nitric oxide as a function of altitude. The peak production of nitric oxide is found to occur at altitudes between 9 x 10(exp 4) and 10(exp 5) m, the total annual rate being about 4 x 10(exp 7) kg. The present results suggest that the large concentration of nitric oxide observed below 9.5 x 10(exp 4) m could be attributed to meteoroids instead of photodissociation of nitrogen into metastable, 2D-state atoms, as has been previously hypothesized.
    Keywords: Geophysics
    Type: Atmospheric Environment; Volume 10; 535-545
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: This paper presents the results of the works carried out jointly at Stanford University and Ames Research Center under a grant from the Ballistic Missile Defense Organization (BMDO) (formerly the Strategic Defense Initiative Organization) to explain and understand the results of the two flight experiments, Bow Shock Ultra-Violet 1 and Bow Shock Ultra-Violet 2, carried out by the Organization. A portion of the material contained in this paper has been reported elsewhere in open literature. However, this paper provides (1) the details of scientific contents not available in those literature, (2) the links among those and the logical order of the efforts involved, and (3) some materials not contained in any open literature. The first author is responsible for execution of the work; the second author directed the work of the first author. In the two flight experiments mentioned above, the spectra of radiation in the ultraviolet wavelength range incident on the stagnation point of a blunt body were measured at the flight speeds of 3.8 and 5.2 km/sec over a wide range of altitudes. The results were compared first with the calculations made using the original version of the NEQAIR/STRAP codes written earlier by the second author. At low altitudes, the calculations agreed with the measurement. However, at high altitudes, the calculations underestimated the intensity of the radiation by several orders of magnitudes. A shock tube experiment was carried out at CALSPAN and a plasma-torch experiment was carried out at Stanford University to produce experimental data to help explain the discrepancy. In addition, the shock tube experiment at Ames Research Center carried out independently of the BMDO was also found to be relevant to this question. In this paper, several theoretical models are developed and calculations using the models were carried out to explain the results not only of the flight experiments but also of the CALSPAN, Stanford, and Ames experiments. The are: (1) the diffusion model for the rotational mode to explain the slowness of rotational excitation, (2) assignment of different vibrational temperatures and different relaxation rates for different molecules, and (3) the modification of the NEQAIR code to accommodate the new experimental data. This paper shows that the discrepancy between the flight data and calculation is smaller with the present model, but is still substantial.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...