ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn〉Cu〉Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn〉Cu〉Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.
    Keywords: Geophysics
    Type: Science Serving Agriculture and Natural Resources: Past/Present; Oct 30, 1999 - Nov 04, 1999; Salt Lake City, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The West Spur Clovis class rocks in Gusev Crater are some of the most altered rocks in Gusev Crater and likely contain a mixed sulfate and phyllosilicate mineralogy [1,2]. The high S and Cl content of the Clovis rocks suggests that acidic vapors or fluids of H2SO4 and HCl reacted with the Clovis parent rock to form Ca, Mg,- sulfates, iron-oxyhydroxides and secondary aluminosilicates (approx.60 wt.%) of a poorly crystalline nature (e.g., allophane) [1]. Up to 14-17 wt.% phyllosilicates (e.g., kaolinite, chlorite, serpentine) are hypothesized to exist in the Clovis materials suggesting that Clovis parent materials while possibly exposed to acidic pHs were likely neutralized by basalt dissolution which resulted in mildly acidic pHs (4-6) [1, 2]. This work proposes that subsequent to the alteration of the Clovis rocks, alteration fluids became concentrated in ions resulting in the addition of silicate and salts. The objective of this work is to utilize Ti-normalized mass balance analysis to evaluate (1) mineral gains and losses and (2) elemental gains and losses in the Clovis rocks. Results of this work will be used evaluate the nature of geochemical conditions that affect phyllosilicate and sulfate formation at Gusev crater.
    Keywords: Geophysics
    Type: JSC-CN-25575 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.
    Keywords: Geophysics
    Type: JSC-CN-157 , Soil Science Society of American Annual Meeting; Oct 31, 2004 - Nov 05, 2004; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The Athena Science Instrument Payload is providing geochemical and mineralogical information for determining the properties of rocks, soils, and outcrops at the Mars Exploration Rovers landing sites. These measurements indicate that a variety of aqueous processes as well as various degrees of alteration occurred at the two landing sites. Light-toned rocks around the Spirit landing site appear to have coatings or alteration rinds that may have resulted from limited aqueous alteration on the surfaces of basaltic rocks. Hematite and high Fe(III)lFe(total) occur at the surfaces of these rocks. High concentrations of elements highly mobile in water (i.e., S, Cl, and Br) occur in rock veins, vugs, and coatings and at the bottom of soil trenches in the "intercrater plains." One scenario for the formation of rock coatings or rinds and translocation of mobile elements is that water might have occurred briefly at the Martian surface during periods of high obliquity and thin films of water may have mobilized elements and altered the surfaces of rocks. Outcrops on the slopes of the Columbia Hills appear to be extensively altered as suggested by their relative "softness" (measured as resistance to abrasion) as compared to basalts on the adjacent plains, high Fe(III)lFe(total), iron mineralogy dominated by nanophase Fe(III) oxides and hematite, and high Br and CI concentrations beneath outcrop surfaces. These outcrops may have formed by the alteration of basaltic rocks and/or volcaniclastic materials by solutions that were rich in volatile elements (e.g., Br, CI, S). However, it is not clear whether aqueous alteration occurred at depth (e.g., metasomatism), by hydrothermal solutions (e.g., associated with volcanic or impact processes), by vapors rich in volcanic gases, or by low-temperature solutions. The occurrence of jarosite, hematite, and other sulfates (e.g., Mg sulfates) in Eagle and Endurance crater outcrops are strong indicators of aqueous processes at Meridiani Planum. These phases occur with siliciclastic materials in outcrops. Jarosite can only form by aqueous processes under very acidic conditions; e.g., acid sulfate weathering conditions resulting from the oxidation of Fe sulfides or by sulfuric acid alteration of basalts by solutions associated with S02-rich volcanic gases. It is plausible that acidic solutions rich in sulfur (and Fe(II)) reacted with basaltic sediments (which provided a host of soluble cations) under oxidizing conditions and then, through evaporation, formed sediments rich in jarosite and other sulfates along with siliciclastic materials. Hematite-rich spherules in outcrops may have formed by aqueous processes within the sedimentary layers, which promoted transport of Fe (II) solutions to nucleation sites where oxidation and precipitation occurred to form hematite-rich spherules.
    Keywords: Geophysics
    Type: JSC-CN-161 , American Geophysical Union Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080 and 430 cm-1 from Si(Al)-O stretching and Si(Al)-O bending vibrations, respectively, and Al-rich allophanes have three broad absorptions centered near 950, 540, and 430 cm-1. We used a spectral library commonly used to deconvolve TES spectra and four allophane spectra to model nine spectrally distinct regions on Mars [from Rogers et al., 2007]. Regions previously modeled with high-silica phases contain significant amounts of allophane (〉10 vol.%) in our models. Our models of northern Acidalia, the type locality for surface type 2 materials, contain 40 vol.% Si-rich allophane. The presence of allophane in multiple surface regions of Mars indicates a more widespread occurrence of low-temperature aqueous alteration at moderate pH than has been previously recognized. The regional variations in modeled abundances and the types of allophane (Si- vs. Al-rich) suggest regional differences in Mars weathering processes.
    Keywords: Geophysics
    Type: JSC-CN-22330 , AGU Fall Meeting 2010; Dec 13, 2010 - Dec 18, 2010; San Francisco, CA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The chemical composition, global abundance, distribution, and formation pathways of carbonates are central to understanding aqueous processes, climate, and habitability of early Mars. The Mars Exploration Rover (MER) Spirit analyzed a series of olivine-rich outcrops while descending from the summit region of Husband Hill into the Inner Basin of the Columbia Hills of Gusev Crater to the eastern edge of the El Dorado ripple field in late 2005. Reanalysis of Spirit s mineralogical data from the Moessbauer Spectrometer (MB) and the Miniature Thermal Emission Spectrometer (Mini-TES) and chemical data from the Alpha Particle X-Ray Spectrometer (APXS) in 2010, coupled with new laboratory data for carbonate-bearing samples, lead to identification of carbonate in one of the outcrops (Comanche) [Morris, R.V., et al., Science, 329, 421-424]. The carbonate is rich in magnesium and iron (Mc62Sd25Cc11Rh2, assuming all Ca and Mn is associated with the carbonate) and is a major component of the Comanche outcrops (16 to 34 wt.%). The mineralogical, chemical, and abundance data are constrained in multiple, mutually consistent ways by the MER analyses. For example, a low-Ca carbonate is required by the MB and APXS data and is consistent with Mini-TES data. Three spectral features attributable to fundamental infrared vibrational modes of low-Ca carbonate are present in the Mini-TES spectra of Comanche outcrops. The average composition of Comanche carbonate approximates the average composition of the carbonate globules in Martian meteorite ALH 84001. Analogy with ALH 84001, terrestrial, and synthetic carbonate globules suggests that Comanche carbonate precipitated from aqueous solutions under hydrothermal conditions at near neutral pH in association with volcanic activity during the Noachian era. Comanche outcrop morphology suggests they are remnants of a larger carbonate-bearing formation that evolved in ultramafic rock and then preferentially eroded by a combination of aeolian abrasion and chemical decomposition by exposure to acid-sulfate vapors/solutions. The high carbonate concentration in the Comanche outcrops supports climate models involving a CO2 greenhouse gas on a wet and warm early Mars and subsequent sequestering of at least part of that atmosphere in carbonate minerals.
    Keywords: Geophysics
    Type: JSC-CN-22193 , AGU Fall Meeting 2010; Dec 13, 2010 - Dec 18, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates and sulfates) may be important phases on the surface of Mars. In order to characterize these phases the Thermal and Evolved Gas Analyzer (TEGA) flying on the Mars'98 lander will perform analyses on surface samples from Mars. Hydromagnesite [Mg5(CO3)4(OH)2.4H2O] is considered a good standard mineral to examine as a Mars soil analog component because it evolves both H2O and CO2 at temperatures between 0 and 600 C. Our aim here is to interpret the DSC signature of hydromagnesite under ambient pressure and 20 sccm N2 flow in the range 25 to 600 C. The DSC curve for hydromagnesite under the above conditions consists of three endothermic peaks at temperatures 296, 426, and 548 and one sharp exotherm at 511 C. X-ray analysis of the sample at different stop temperatures suggested that the exotherm corresponded with the formation of crystalline magnesite. The first endotherm was due to dehydration of hydromagnesite, and then the second one was due to the decomposition of carbonate, immediately followed by the formation of magnesite (exotherm) and its decomposition to periclase (last endotherm). Evolution of water and CO2 were consistent with the observed enthalpy changes. A library of such DSC-evolved gas curves for putative Martian minerals are currently being acquired in order to facilitate the interpretation of results obtained by a robotic lander.
    Keywords: Geophysics
    Type: Science Serving Agriculture and Natural Resources: Past/Present; Oct 30, 1999 - Nov 04, 1999; Salt Lake City, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Following the successful landings of both Mars Exploration Rover (MER) vehicles at Gusev Crater and Meridiani Planum, respectively, their Athena suite of instruments is being used to study the geologic history of these two very different landing sites on Mars that had been selected on the basis of showing different types of evidence for aqueous processes in the planet s past. Utilizing the on-board instruments as well as the rovers mobility system, a wide range of physical properties investigations is carried out as well - the subject of this abstract - that provide additional information on the geology and processes at the sites. Results of the mission in general as well as of the physical properties studies thus far greatly exceed expectations in that observations and measurements by both vehicles show a rich variety in materials and processes: the Gusev site in the vicinity of the lander is remarkably flat and generally devoid of large rocks along traverses up to the time of this writing (approx.Sol 50) and suggestive of a deflated surface with generally only thin veneers of bright dust while exhibiting evidence of a widespread occurrence of a crust from cemented fines that has been observed to fail in the form of blocky clods when disturbed by vehicle rolling action; numerous small and shallow depressions - presumably created by impacts - are observed at the site which are infilled with bright, fine-grained material that likewise appears indurated and which was studied by a trenching experiment; small ripple bedforms are scattered across the site and were characterized in terms of particle size distributions. At the Meridiani site, studies so far - up to approx.Sol 33 - have focussed on soils and the rock outcrop encountered within the approx.20 m diameter crater that the spacecraft came to rest in: from a physical properties point of view, a mantle of dark, well-sorted, apparently basaltic sand with small to moderate cohesion has been of interest - and has been studied by a trenching experiment - as well as a fine-grained unit underlying the mantle at least locally within the crater. Rock grindings were accomplished successfully at both sites at the time of this writing, suggesting different strengths of the two targets (the basaltic rock nicknamed Adirondack at Gusev and the Meridiani rock outcrop) in addition to enabling compositional measurements below the original rock surfaces.
    Keywords: Geophysics
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 24, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes.Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth.Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows.The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.
    Keywords: Geophysics
    Type: Science; 305; 807-810
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...