ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: It is well known that many chlorine and bromine compounds that are inert in the troposphere are destroyed in the stratosphere and contribute to the stratospheric burden of reactive chlorine and bromine species. But the contribution from those chlorine and bromine compounds which are reactive in the troposphere is less certain because it is not known whether convection can transport these gases to the upper troposphere rapidly enough to overcome their short tropospheric lifetimes. We examine this issue using a three-dimensional chemistry and transport model to simulate the evolution of three gases which have surface sources, bromoform (CHBr3), methyl chloroform (CH3CCl3), and carbon dioxide (CO2). Our objective is to determine if CHBr3 might enhance the lower stratospheric burden of reactive bromine. The other two gases provide tests of the quality of the simulation. Both CHBr3 and CH3CCl3 are destroyed in the troposphere by reaction with hydroxyl (OH), whose latitudinal and monthly variation is provided by a two-dimensional model and upon which a diurnal variation is imposed. Comparison of the lifetime of CH3CCl3 computed from observations (5 years) with the lifetime computed from the simulation provides an integrated test of the model's transport and photochemistry. Observations also show that CO2 exhibits a strong seasonal cycle in the northern hemisphere troposphere that is not propagated directly across the tropopause into the lower stratosphere. Thus, maintenance of the observed troposphere-stratosphere distinctness of CO2 in the presence of convection is a critical benchmark for meeting our objective.
    Keywords: Geophysics
    Type: Special Session A04: constituent Transport in the Troposphere and Lower Stratosphere; May 30, 2000 - Jun 03, 2000; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: This section contains a number of special diagnostics that are designed to examine certain mechanisms. Section 1 reports on the method used to test the photochemical partitioning in the models. Sections 2 and 3 represent efforts to examine the model calculated production and removal rates for ozone and how the values are combined with transport rates in the models to produce the simulated ozone distributions. Sections 4 and 5 concentrate on polar processes including the dynamics aspect of vortex confinement and the chemical aspects of chlorine activation.
    Keywords: Geophysics
    Type: Models and Measurements Intercomparison 2; 363-448; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: We evaluate transport processes in the extratropical lower stratosphere for both models and measurements with the help of equivalent length diagnostic from the modified Lagrangian-mean (MLM) analysis. This diagnostic is used to compare measurements of long-lived tracers made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) with simulated tracers. Simulations are produced in Chemical and Transport Models (CTMs), in which meteorological fields are taken from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), the Middle Atmosphere Community Climate Model (MACCM2), and the Geophysical Fluid Dynamics Laboratory (GFDL) "SKYHI" model, respectively. Time series of isentropic equivalent length show that these models are able to capture major mixing and transport properties observed by CLAES, such as the formation and destruction of polar barriers, the presence of surf zones in both hemispheres. Differences between each model simulation and the observation are examined in light of model performance. Among these differences, only the simulation driven by GEOS DAS shows one case of the "top-down" destruction of the Antarctic polar vortex, as observed in the CLAES data. Additional experiments of isentropic advection of artificial tracer by GEOS DAS winds suggest that diabatic movement might have considerable contribution to the equivalent length field in the 3D CTM diagnostics.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Off-line models of the evolution of stratospheric constituents use meteorological information from a general circulation model (GCM) or from a data assimilation system (DAS). Here we focus on transport in the tropics and between the tropics and middle latitudes. Constituent fields from two simulations are compared with each other and with observations. One simulation uses winds from a GCM and the second uses winds from a DAS that has the same GCM at its core. Comparisons of results from the two simulations with observations from satellite, aircraft, and sondes are used to judge the realism of the tropical transport. Faithful comparisons between simulated fields and observations for O3, CH4, and the age-of-air are found for the simulation using the GCM fields. The same comparisons for the simulation using DAS fields show rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport found in the DAS fields may be due to the failure of the GCM used in the assimilation system to represent the quasi-biennial oscillation. The assimilation system accounts for differences between the observations and the GCM by requiring implicit forcing to produce consistency between the GCM and observations. These comparisons suggest that the physical consistency of the GCM fields is more important to transport characteristics in the lower tropical stratosphere than the elimination bias with respect to meteorological observations that is accomplished by the DAS. The comparisons presented here show that GCM fields are more appropriate for long-term calculations to assess the impact of changes in stratospheric composition because the balance between photochemical and transport terms is likely to be represented correctly.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably well-isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the diabatic trajectory calculations, the age spectrum is too broad as a result of too much exchange between the tropics and mid-latitudes. The age spectrum determined using the kinematic trajectory calculation is less broad and lacks an age offset; both of these features are due to excessive vertical dispersion of parcels. The tropical and mid-latitude mean age difference between the diabatically and kinematically determined age-spectra is about one year, the former being older. The CTM calculation of the age spectrum using the DAS winds shows the same dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the mean ages determined in a number of previous DAS driven CTM's are too young compared with observations. Finally, we note trajectory-generated age spectra show significant age anomalies correlated with the seasonal cycles, and these anomalies can be linked to year-to-year variations in the tropical heating rate. These anomalies are suppressed in the CTM spectra suggesting that the CTM transport is too diffusive.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: On 26 January 2006, the High Resolution Dynamic Limb Sounder (HIRDLS) observed low mixing ratios of ozone and nitric acid in an approximately 2 km vertical layer near 100 hPa extending from the subtropics to 55 degrees N over North America. The subsequent evolution of the layer is simulated with the Global Modeling Initiative (GMI) model and substantiated with HIRDLS observations. Air with low mixing ratios of ozone is transported poleward to 80 degrees N. Although there is evidence of mixing with extratropical air and diabatic descent, much of the tropical intrusion returns to the subtropics. This study demonstrates that HIRDLS and the GMI model are capable of resolving thin intrusion events. The observations combined with simulation are a first step towards development of a quantitative understanding of the lower stratospheric ozone budget.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: We use the high-resolution dynamic limb sounder (HIRDLS) high-vertical resolution ozone profiles in the northern hemisphere lower stratosphere to examine the meridional transport out of the tropics. We focus on February 2005.2007 when there are differences in the dynamical background in the lower stratosphere due to the states of the quasibiennial oscillation and polar vortex. HIRDLS data reveal a large number of low ozone laminae that have the characteristics of tropical air at midlatitudes. More laminae are observed in February in 2006 than in 2005 or 2007. Because laminae can form, move out of the tropics, and return to the tropics without mixing into the midlatitude ozone field, the number of laminae is not directly related to the net transport. We use equivalent latitude coordinates to discriminate between reversible and irreversible laminar transport. The equivalent latitude analysis shows greater irreversible transport between the tropics and lower midlatitudes in both 2005 and 2007 compared to 2006 despite the higher number of laminae observed in 2006. Our conclusion that there was more irreversible transport of tropical air into the lower midlatitudes in 2005 and 2007 is supported by equivalent length analysis of mixing using microwave limb sounder N2O measurements. This study shows that reversibility must be considered in order to infer the importance of lamination to net transport.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 115; D15305
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.
    Keywords: Geophysics
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: We have developed a technique to diagnose the stratospheric age spectrum and estimate the mean age of air using the distributions of at least four constituents with different photochemical lifetimes. We demonstrate that the technique works using a 3D CTM and then apply the technique to UMS CLAES January 1993 observations of CFC11, CFC12, CH4 and N2O. Our results are generally in agreement with mean age of air estimates from the chemical model and from observations of SF6 and CO2; however, the mean age estimates show an intrusion of very young tropical air into the mid-latitude stratosphere. This feature is consistent with mixing of high N20 air out of the tropics during the westerly phase of the QBO.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: The Global Modeling Initiative has integrated two 35-year simulations of an ozone recovery scenario with an offline chemistry and transport model using two different meteorological inputs. Physically based diagnostics, derived from satellite and aircraft data sets, are described and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barrier formation in the subtropics and polar regions, and extratropical wave-driven transport. Some diagnostics are especially relevant to simulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of meteorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a general circulation model (GMI(sub GCM)) showed a very good residual circulation in the tropics and northern hemisphere. The simulation with input from a data assimilation system (GMI(sub DAS)) performed better in the midlatitudes than at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GMI(sub GCM) has greater fidelity throughout the stratosphere than the GMI(sub DAS).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...