ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; FLP-FRT ; BFBC ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A YEp chimaeric plasmid containing URA3 and SMR1 [sulfometuron methyl resistant (SMR) allele of ILV2] as selectable markers, and the 2 μm site-specific recombination FLP recognition target (FRT), was integrated at the ilv2-Δ1 site in chromosome XIII in a cir°] haploid. Southern analysis defined two integrant structures. Structure I had URA3 distal and SMR1 proximal to FRT whereas in structure II both markers were distal to FRT. Selectable markers were stably inherited in [cir°] haploids and [cir°] diploids heterozygous for the integrant and ILV2. Approximately 14% of heterozygous [cir +] diploid cells exhibited homozygotization for the distal (500 kb) ade4 marker in trans. In [cir +] diploids FLP-FRT recombination resulted in the simultaneous loss of both structure II markers, whereas the structure I distal URA3 marker loss always preceded the variable loss of the proximal SMR1 marker. URA− cells continued to segregate for loss of SMR1 until stable URA− SMR or URA−SMS cells were produced. Gene conversion was identified in stable URA−SMR cells that were homozygous SMR1/SMR1 but contained wild type ILV2 restriction endonuclease sites. These observations support a model based on concerted FLP-FRT action resulting from the secondary integration of native 2 μm DNA followed by unequal sister chromatid exchange (USCE) within inverted FRTs. The resultant chromatid bridge resulted in a double-stand break. Fusion of the broken ends of sister chromatids generated a breakage-fusion-bridge cycle (BFBC). Repeated rounds of the BFBC resulted in proximal marker loss and the generation of additional double-strand breaks. Recombinogenic properties of the double-strand break initiated events leading to homozygotization and gene conversion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...