ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-08-01
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors are phosphorylated by kinases that mediate agonist-dependent receptor deactivation. Although many receptor kinases have been isolated, the corresponding phosphatases, necessary for restoring the ground state of the receptor, have not been identified. Drosophila RDGC (retinal degeneration C) is a phosphatase required for rhodopsin dephosphorylation in vivo. Loss of RDGC caused severe defects in the termination of the light response as well as extensive light-dependent retinal degeneration. These phenotypes resulted from the hyperphosphorylation of rhodopsin because expression of a truncated rhodopsin lacking the phosphorylation sites restored normal photoreceptor function. These results suggest the existence of a family of receptor phosphatases involved in the regulation of G protein-coupled signaling cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinos, J -- Jalink, K -- Hardy, R W -- Britt, S G -- Zuker, C S -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):687-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Arrestin/metabolism ; *Calcium-Binding Proteins ; Darkness ; Drosophila ; *Drosophila Proteins ; Electroretinography ; GTP-Binding Proteins/*metabolism ; Light ; Mutation ; Phosphoprotein Phosphatases/genetics/*metabolism ; Phosphorylation ; Photoreceptor Cells, Invertebrate/*metabolism ; Retina/metabolism ; Retinal Degeneration ; Rhodopsin/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-06-25
    Description: Arrestins have been implicated in the regulation of many G protein-coupled receptor signaling cascades. Mutations in two Drosophila photoreceptor-specific arrestin genes, arrestin 1 and arrestin 2, were generated. Analysis of the light response in these mutants shows that the Arr1 and Arr2 proteins are mediators of rhodopsin inactivation and are essential for the termination of the phototransduction cascade in vivo. The saturation of arrestin function by an excess of activated rhodopsin is responsible for a continuously activated state of the photoreceptors known as the prolonged depolarized afterpotential. In the absence of arrestins, photoreceptors undergo light-dependent retinal degeneration as a result of the continued activity of the phototransduction cascade. These results demonstrate the fundamental requirement for members of the arrestin protein family in the regulation of G protein-coupled receptors and signaling cascades in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolph, P J -- Ranganathan, R -- Colley, N J -- Hardy, R W -- Socolich, M -- Zuker, C S -- R01 EY008768/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1910-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, La Jolla, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316831" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; *Arrestins ; Drosophila ; Drosophila Proteins ; Eye Proteins/genetics/*physiology ; Female ; GTP-Binding Proteins/*metabolism ; Genes, Insect ; Kinetics ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/genetics/*physiology ; Photic Stimulation ; Photoreceptor Cells/cytology/*physiology ; Rhodopsin/analogs & derivatives/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...