ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (2)
  • 1990-1994  (2)
Collection
Keywords
  • GEOPHYSICS  (2)
Years
  • 1990-1994  (2)
Year
  • 1
    Publication Date: 2019-07-13
    Description: We determine the deformation produced by the lunisolar tidal potential in a rotating, spheroidal model Earth. We proceed by decomposing the equations of motion into separate, though coupled, equations for the nutational and deformational parts of the Earth's response. Using this scheme, we derive a simpler set of equations for the deformational displacements, where the driving forces include not only the tidal terms but also inertial forces and gravitational perturbations associated with the nutational motions. We show that the deformations are affected only to a very small extent by the Earth's asphericity and rotation. This fact is exploited to set up a perturbative procedure, whereby the equation governing the deformation is separated into equations of zeroth and first orders in the perturbation.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; B12; p. 21659-21676
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: We develop a general method of calculating the linear stability of a fluid with homogeneous layers that is heated from below. The method employs a propagator technique to obtain expressions for the fluid velocity, stress, and temperature. The principal advantage of the method is the ease with which solutions are adapted to a wide variety of boundary conditions and fluid properties. We demonstrate the utility of the method using three examples which quantify the effects of (1) rheological layering, (2) mobile plates at the surface, and (3) multiple phase transitions. Each example is presented in the context of Earth's mantle. In the first example, we predict that convection becomes confined to the upper mantle once the viscosity increase between the upper and lower mantle exceeds a factor of 2000, consistent with the nonlinear calculations of Davies (1977). In the second example we find that the heat flux variations in a convecting fluid with variably sized, surface plates can be attributed, in part, to changes in the critical Rayleigh number. The linear stability of a fluid with multiple phase transitions is significantly affects by the locations of the transitions. We find that phase transitions have their largest effect when they are located at the center of the fluid layer and become much less important when they are located near the exterior boundaries.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B10; p. 19,885-19,900
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...