ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 21 (1999), S. 271-294 
    ISSN: 1573-0417
    Keywords: palaeolimnology ; boreal forests ; sediments ; climatic controls ; trophic state ; nutrient geochemistry ; biogenic silicon ; chironomids ; Finland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades. The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 11 (1994), S. 323-332 
    ISSN: 1573-0417
    Keywords: varves ; palaeolimnology ; sediment chemistry ; climatic forcing ; human activity ; Finland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Human activity and climatic forcing have influenced sedimentation in three of Finland's deepest lakes during the last centuries. High-resolution sediment sequences of Lake Päijänne, Lake Pääjärvi and Lake Pyhäjärvi represent records of the last 440 years, 839 years and 633 years, respectively. The accumulation rates of dry matter, organic carbon and biogenic silica refer to changes in human activity in the catchments. However, they also reveal the importance of climatic forcing on lake sediment deposition. A significant correlation was found between instrumentally measured records of temperature (163 years) and precipitation (148 years), and varve thickness. Warm winter months indicating a short ice-cover period have the strongest control on varve thickness. This shows that wind-driven resuspension of littoral material is the forcing mechanism of climate on lake sediments. The long-term human-induced erosion pulses observed may even have magnified the climatic signals in some cases. Nevertheless, increased anthropogenic field erosion in the catchment, and the associated leaching of bioavailable nutrients, hampers the observation of climate signals, especially during the last 50 years, in the lakes studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 18 (1997), S. 145-163 
    ISSN: 1573-0417
    Keywords: Holocene ; Finland ; lake sedimentchemistry ; treeline ; pollen diagram ; erosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The sediments of Lake Kilpisjärvi were described and analysed for element chemistry and pollen to study the effects of treeline fluctuations in the catchment. Lake Kilpisjärvi is one of the largest lakes in Finnish Lapland, with its catchment partly above the treeline and partly covered with mountain birch woodland. Although the presence of subfossil pine shows that the catchment was previously covered with mountain birch woodland during the Holocene, the present pine treeline has receded 70 km from the lake. Pollen analysis results show that pine immigrated to the area during the Atlantic chrone and that ∼7000 BP pine forests occupied much of the catchment. Pine started to decline around 3500 BP and vegetation in the catchment became more open. Alkaline and alkaline earth metals and some transition metals document the change from glaciolacustrine clay to more organic sediment. However, these geochemical trends give no indication of changes in erosion rate resulting from changes in catchment vegetation. These changes were detected by plotting suitable element ratios. In addition to the conventional Si/Al and Na/K ratios, the Ca labile /Si ratio and especially the ratio of labile Ca to K were found to be useful. Of all the elements analysed, potassium showed the strongest reaction to changes in the balance between weathering and erosion. During the phase of denser forests, chemical weathering was dominant, whereas during phases of open catchment, physical erosion prevailed. The effects of changing climate and catchment vegetation were distinguished from other signals. For instance, iron and manganese were enriched at the top of the core due to diffusion and, at the same time, old precipitate layers persisted after burial to deeper levels in the sediment. These iron and manganese rich layers had an effect on the distributions of cobalt, zinc, and vanadium, showing increased concentrations of these elements. Other effects that made the interpretation of chemical records difficult were the effect of ongoing mineralization of organic matter in the top layers of sediment and the effect of biogenic silicon. Owing to the stable conditions of the lake, the desired chemical signals were detected, despite the masking trends.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...