ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-25
    Description: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Li -- Getz, Gad -- Wheeler, David A -- Mardis, Elaine R -- McLellan, Michael D -- Cibulskis, Kristian -- Sougnez, Carrie -- Greulich, Heidi -- Muzny, Donna M -- Morgan, Margaret B -- Fulton, Lucinda -- Fulton, Robert S -- Zhang, Qunyuan -- Wendl, Michael C -- Lawrence, Michael S -- Larson, David E -- Chen, Ken -- Dooling, David J -- Sabo, Aniko -- Hawes, Alicia C -- Shen, Hua -- Jhangiani, Shalini N -- Lewis, Lora R -- Hall, Otis -- Zhu, Yiming -- Mathew, Tittu -- Ren, Yanru -- Yao, Jiqiang -- Scherer, Steven E -- Clerc, Kerstin -- Metcalf, Ginger A -- Ng, Brian -- Milosavljevic, Aleksandar -- Gonzalez-Garay, Manuel L -- Osborne, John R -- Meyer, Rick -- Shi, Xiaoqi -- Tang, Yuzhu -- Koboldt, Daniel C -- Lin, Ling -- Abbott, Rachel -- Miner, Tracie L -- Pohl, Craig -- Fewell, Ginger -- Haipek, Carrie -- Schmidt, Heather -- Dunford-Shore, Brian H -- Kraja, Aldi -- Crosby, Seth D -- Sawyer, Christopher S -- Vickery, Tammi -- Sander, Sacha -- Robinson, Jody -- Winckler, Wendy -- Baldwin, Jennifer -- Chirieac, Lucian R -- Dutt, Amit -- Fennell, Tim -- Hanna, Megan -- Johnson, Bruce E -- Onofrio, Robert C -- Thomas, Roman K -- Tonon, Giovanni -- Weir, Barbara A -- Zhao, Xiaojun -- Ziaugra, Liuda -- Zody, Michael C -- Giordano, Thomas -- Orringer, Mark B -- Roth, Jack A -- Spitz, Margaret R -- Wistuba, Ignacio I -- Ozenberger, Bradley -- Good, Peter J -- Chang, Andrew C -- Beer, David G -- Watson, Mark A -- Ladanyi, Marc -- Broderick, Stephen -- Yoshizawa, Akihiko -- Travis, William D -- Pao, William -- Province, Michael A -- Weinstock, George M -- Varmus, Harold E -- Gabriel, Stacey B -- Lander, Eric S -- Gibbs, Richard A -- Meyerson, Matthew -- Wilson, Richard K -- P50 CA070907/CA/NCI NIH HHS/ -- R01 CA154365/CA/NCI NIH HHS/ -- U19 CA084953/CA/NCI NIH HHS/ -- U19 CA084953-050003/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-04/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1069-75. doi: 10.1038/nature07423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948947" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma, Bronchiolo-Alveolar/*genetics ; Female ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Humans ; Lung Neoplasms/*genetics ; Male ; Mutation/*genetics ; Proto-Oncogenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-01
    Description: Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (〈10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3x), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158312/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158312/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yong -- Waters, Jill -- Leung, Marco L -- Unruh, Anna -- Roh, Whijae -- Shi, Xiuqing -- Chen, Ken -- Scheet, Paul -- Vattathil, Selina -- Liang, Han -- Multani, Asha -- Zhang, Hong -- Zhao, Rui -- Michor, Franziska -- Meric-Bernstam, Funda -- Navin, Nicholas E -- 1R01CA169244-01/CA/NCI NIH HHS/ -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA098258/CA/NCI NIH HHS/ -- R01 CA169244/CA/NCI NIH HHS/ -- R01 CA172652/CA/NCI NIH HHS/ -- R01CA172652/CA/NCI NIH HHS/ -- R21 CA174397/CA/NCI NIH HHS/ -- R21CA174397-01/CA/NCI NIH HHS/ -- U24CA143883/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- UL1 TR000371/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 14;512(7513):155-60. doi: 10.1038/nature13600. Epub 2014 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, Texas 77030, USA. ; 1] The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, Texas 77030, USA [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA. ; The University of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computational Biology, Houston, Texas 77030, USA. ; 1] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA [2] The University of Texas MD Anderson Cancer Center, Department of Epidemiology, Houston, Texas 77030, USA. ; The University of Texas MD Anderson Cancer Center, Department of Pathology, Houston, Texas 77030, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02215, USA. ; The University of Texas MD Anderson Cancer Center Department of Investigational Cancer Therapeutics, Houston, Texas 77030, USA. ; 1] The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, Texas 77030, USA [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA [3] The University of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computational Biology, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079324" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics ; Cell Line, Tumor ; *Clonal Evolution ; DNA Fingerprinting ; Female ; Genetic Variation ; Genome/*genetics ; Humans ; Models, Theoretical ; Mutation/genetics ; Sequence Analysis, DNA ; Single-Cell Analysis ; Triple Negative Breast Neoplasms/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-01
    Description: DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Hongshan -- Zhu, Ping -- Yan, Liying -- Li, Rong -- Hu, Boqiang -- Lian, Ying -- Yan, Jie -- Ren, Xiulian -- Lin, Shengli -- Li, Junsheng -- Jin, Xiaohu -- Shi, Xiaodan -- Liu, Ping -- Wang, Xiaoye -- Wang, Wei -- Wei, Yuan -- Li, Xianlong -- Guo, Fan -- Wu, Xinglong -- Fan, Xiaoying -- Yong, Jun -- Wen, Lu -- Xie, Sunney X -- Tang, Fuchou -- Qiao, Jie -- England -- Nature. 2014 Jul 31;511(7511):606-10. doi: 10.1038/nature13544. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2]. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China [3]. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China [3]. ; Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China. ; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *DNA Methylation ; DNA Transposable Elements/genetics ; Embryo, Mammalian ; Embryonic Stem Cells/physiology ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Germ Cells/metabolism ; Histones/metabolism ; Humans ; Long Interspersed Nucleotide Elements/genetics ; Male ; Mice ; Promoter Regions, Genetic/genetics ; Short Interspersed Nucleotide Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...