ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-08-11
    Description: Cloning of mammals by nuclear transfer (NT) results in gestational or neonatal failure with at most a few percent of manipulated embryos resulting in live births. Many of those that survive to term succumb to a variety of abnormalities that are likely due to inappropriate epigenetic reprogramming. Cloned embryos derived from donors, such as embryonic stem cells, that may require little or no reprogramming of early developmental genes develop substantially better beyond implantation than NT clones derived from somatic cells. Although recent experiments have demonstrated normal reprogramming of telomere length and X chromosome inactivation, epigenetic information established during gametogenesis, such as gametic imprints, cannot be restored after nuclear transfer. Survival of cloned animals to birth and beyond, despite substantial transcriptional dysregulation, is consistent with mammalian development being rather tolerant to epigenetic abnormalities, with lethality resulting only beyond a threshold of faulty gene reprogramming encompassing multiple loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rideout , W M 3rd -- Eggan, K -- Jaenisch, R -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1093-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Nucleus/*genetics/metabolism ; *Cloning, Organism ; DNA Methylation ; Dosage Compensation, Genetic ; Embryo, Mammalian/cytology/*physiology ; *Embryo, Nonmammalian ; *Embryonic and Fetal Development ; Female ; Gametogenesis ; *Gene Expression Regulation, Developmental ; Genomic Imprinting ; Germ Cells/cytology/physiology ; Male ; Nuclear Transfer Techniques ; Phenotype ; Stem Cells/cytology/physiology ; Telomere/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-07-07
    Description: Cloning by nuclear transfer (NT) is an inefficient process in which most clones die before birth and survivors often display growth abnormalities. In an effort to correlate gene expression with survival and fetal overgrowth, we have examined imprinted gene expression in both mice cloned by nuclear transfer and in the embryonic stem (ES) cell donor populations from which they were derived. The epigenetic state of the ES cell genome was found to be extremely unstable. Similarly, variation in imprinted gene expression was observed in most cloned mice, even in those derived from ES cells of the same subclone. Many of the animals survived to adulthood despite widespread gene dysregulation, indicating that mammalian development may be rather tolerant to epigenetic aberrations of the genome. These data imply that even apparently normal cloned animals may have subtle abnormalities in gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humpherys, D -- Eggan, K -- Akutsu, H -- Hochedlinger, K -- Rideout , W M 3rd -- Biniszkiewicz, D -- Yanagimachi, R -- Jaenisch, R -- 5-R35-CA44339/CA/NCI NIH HHS/ -- R01-CA84198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):95-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Birth Weight ; Cell Nucleus/*genetics ; Cesarean Section ; *Cloning, Organism/methods ; Congenital Abnormalities/genetics ; DNA Methylation ; Embryo Loss/genetics ; Embryo Transfer ; Embryo, Mammalian/*cytology/metabolism ; Female ; Fetal Death/genetics ; *Gene Expression Regulation, Developmental ; Gene Silencing ; Genomic Imprinting/*genetics ; Mice ; Oocytes/metabolism ; Placenta/metabolism ; Placentation ; Polyploidy ; Pregnancy ; RNA, Messenger/genetics/metabolism ; Respiration ; Stem Cells/*cytology/*metabolism ; Survival Rate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-11-25
    Description: To study whether cloning resets the epigenetic differences between the two X chromosomes of a somatic female nucleus, we monitored X inactivation in cloned mouse embryos. Both X chromosomes were active during cleavage of cloned embryos, followed by random X inactivation in the embryo proper. In the trophectoderm (TE), X inactivation was nonrandom with the inactivated X of the somatic donor being chosen for inactivation. When female embryonic stem cells with two active X chromosomes were used as donors, random X inactivation was seen in the TE and embryo. These results demonstrate that epigenetic marks can be removed and reestablished on either X chromosome during cloning. Our results also suggest that the epigenetic marks imposed on the X chromosomes during gametogenesis, responsible for normal imprinted X inactivation in the TE, are functionally equivalent to the marks imposed on the chromosomes during somatic X inactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eggan, K -- Akutsu, H -- Hochedlinger, K -- Rideout, W 3rd -- Yanagimachi, R -- Jaenisch, R -- 5-R35-CA44339/CA/NCI NIH HHS/ -- R01-CA84198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090356" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Differentiation ; *Cloning, Organism ; *Dosage Compensation, Genetic ; Embryo, Mammalian/cytology/*metabolism ; Embryonic and Fetal Development ; Female ; Gene Silencing ; Genes, Reporter ; Genomic Imprinting ; Green Fluorescent Proteins ; Luminescent Proteins/genetics ; Male ; Mice ; Muridae ; Nuclear Transfer Techniques ; Oocytes ; Placenta/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Stem Cell Transplantation ; Stem Cells/metabolism ; Transgenes ; X Chromosome/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-22
    Description: Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863936/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dougan, Stephanie K -- Ashour, Joseph -- Karssemeijer, Roos A -- Popp, Maximilian W -- Avalos, Ana M -- Barisa, Marta -- Altenburg, Arwen F -- Ingram, Jessica R -- Cragnolini, Juan Jose -- Guo, Chunguang -- Alt, Frederick W -- Jaenisch, Rudolf -- Ploegh, Hidde L -- DP1 GM106409/GM/NIGMS NIH HHS/ -- R01 AI033456/AI/NIAID NIH HHS/ -- R01 AI087879/AI/NIAID NIH HHS/ -- R01 GM100518/GM/NIGMS NIH HHS/ -- R01 HD045022/HD/NICHD NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 21;503(7476):406-9. doi: 10.1038/nature12637. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/metabolism ; Antibody Specificity/immunology ; B-Lymphocytes/*immunology/pathology/secretion/*virology ; Cell Death ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology/metabolism ; Immunoglobulin G/immunology/metabolism ; Lung/cytology/immunology/secretion/virology ; Lymph Nodes/cytology/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neutralization Tests ; Nuclear Transfer Techniques ; Orthomyxoviridae/pathogenicity/*physiology ; Receptors, Antigen, B-Cell/*immunology/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-04-10
    Description: Mice that are transgenic for rearranged antigen-specific T cell receptors (TCRs) are essential tools to study T cell development and function. Such TCRs are usually isolated from the relevant T cells after long-term culture, often after repeated antigen stimulation, which unavoidably skews the T cell population used. Random genomic integration of the TCR alpha and beta chain and expression from nonendogenous promoters represent additional drawbacks of transgenics. Using epigenetic reprogramming via somatic cell nuclear transfer, we demonstrated that T cells with predefined specificities against Toxoplasma gondii can be used to generate mouse models that express the TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirak, Oktay -- Frickel, Eva-Maria -- Grotenbreg, Gijsbert M -- Suh, Heikyung -- Jaenisch, Rudolf -- Ploegh, Hidde L -- R01 GM062502/GM/NIGMS NIH HHS/ -- R01 GM062502-08/GM/NIGMS NIH HHS/ -- R01-HD045022/HD/NICHD NIH HHS/ -- R37 AI033456/AI/NIAID NIH HHS/ -- R37 AI033456-17/AI/NIAID NIH HHS/ -- R37-CA084198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):243-8. doi: 10.1126/science.1178590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. kirak@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Protozoan/*immunology ; CD8-Positive T-Lymphocytes/immunology ; Embryonic Stem Cells ; Epitopes, T-Lymphocyte ; Female ; Genes, T-Cell Receptor alpha ; Genes, T-Cell Receptor beta ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; *Mice, Transgenic ; Molecular Sequence Data ; *Nuclear Transfer Techniques ; Protozoan Proteins/genetics/immunology ; Receptors, Antigen, T-Cell, alpha-beta/genetics/*immunology ; Toxoplasma/*immunology ; Toxoplasmosis, Animal/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-26
    Description: The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to alpha-synuclein (alphasyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring alphasyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of alphasyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Chee Yeun -- Khurana, Vikram -- Auluck, Pavan K -- Tardiff, Daniel F -- Mazzulli, Joseph R -- Soldner, Frank -- Baru, Valeriya -- Lou, Yali -- Freyzon, Yelena -- Cho, Sukhee -- Mungenast, Alison E -- Muffat, Julien -- Mitalipova, Maisam -- Pluth, Michael D -- Jui, Nathan T -- Schule, Birgitt -- Lippard, Stephen J -- Tsai, Li-Huei -- Krainc, Dimitri -- Buchwald, Stephen L -- Jaenisch, Rudolf -- Lindquist, Susan -- 5 R01CA084198/CA/NCI NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 CA084198/CA/NCI NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):983-7. doi: 10.1126/science.1245296. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Endoplasmic Reticulum Stress/drug effects ; Female ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mutation ; Neurogenesis ; Neurons/*drug effects/metabolism/pathology ; Parkinson Disease/genetics/*metabolism ; Rats ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-08-19
    Description: A genomic clone consisting of the Moloney leukemia proviral genome with moderately repetitive mouse sequences was microinjected into the pronucleus of a mouse zygote. An animal was derived that carried multiple copies of proviral DNA in a tandem array. No evidence for homologous recombination was obtained. The viral genome was expressed in this animal and was transmitted as a single unit to its offspring. Subsequent breeding studies revealed that the proviral DNA had integrated on an X chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, C -- Harbers, K -- Jahner, D -- Jaenisch, R -- New York, N.Y. -- Science. 1983 Aug 19;221(4612):760-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6683871" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/physiology ; Female ; Gene Expression Regulation ; Genes, Viral ; Mice ; Microinjections ; Moloney murine leukemia virus/*genetics ; Recombination, Genetic ; Sex Chromosomes/*physiology ; X Chromosome/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-06-26
    Description: A murine model in which neurotropic retroviral infection can be studied over short periods of time was developed. Microinjection of Cas-Br-E virus into midgestation mouse embryos caused paralysis and death within 25 days after birth, in contrast to virus-infected neonates which develop disease only after 4 months. To evaluate whether antiviral drugs could cross the placental barrier and influence the course of the disease, the drug 3'-azido-3'-deoxythymidine (AZT) was administered to infected embryos through the drinking water of pregnant females. AZT treatment markedly retarded the onset and course of virus-induced central nervous system disease, permitting animals to survive beyond 4 months of age. These results are evidence for effective antiviral treatment during gestation and in the perinatal period and are of potential significance for the management of maternal transmission of the acquired immune deficiency syndrome (AIDS) virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharpe, A H -- Jaenisch, R -- Ruprecht, R M -- CA38497/CA/NCI NIH HHS/ -- HD19015/HD/NICHD NIH HHS/ -- U01-AI24845-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1987 Jun 26;236(4809):1671-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3037694" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antiviral Agents/*therapeutic use ; Central Nervous System Diseases/drug therapy/embryology/*microbiology ; Female ; Fetal Diseases/*drug therapy/microbiology ; Gestational Age ; Maternal-Fetal Exchange ; Mice ; Pregnancy ; *Prenatal Exposure Delayed Effects ; Retroviridae/pathogenicity ; Thymidine/*analogs & derivatives/therapeutic use ; Tumor Virus Infections/*drug therapy/embryology ; Virulence ; Zidovudine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...