ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-11
    Description: Bovine tuberculosis (TB) is one of the most complex, persistent and controversial problems facing the British cattle industry, costing the country an estimated pound100 million per year. The low sensitivity of the standard diagnostic test leads to considerable ambiguity in determining the main transmission routes of infection, which exacerbates the continuing scientific debate. In turn this uncertainty fuels the fierce public and political disputes on the necessity of controlling badgers to limit the spread of infection. Here we present a dynamic stochastic spatial model for bovine TB in Great Britain that combines within-farm and between-farm transmission. At the farm scale the model incorporates stochastic transmission of infection, maintenance of infection in the environment and a testing protocol that mimics historical government policy. Between-farm transmission has a short-range environmental component and is explicitly driven by movements of individual cattle between farms, as recorded in the Cattle Tracing System. The resultant model replicates the observed annual increase of infection over time as well as the spread of infection into new areas. Given that our model is mechanistic, it can ascribe transmission pathways to each new case; the majority of newly detected cases involve several transmission routes with moving infected cattle, reinfection from an environmental reservoir and poor sensitivity of the diagnostic test all having substantive roles. This underpins our findings on the implications of control measures. Very few of the control options tested have the potential to reverse the observed annual increase, with only intensive strategies such as whole-herd culling or additional national testing proving highly effective, whereas controls focused on a single transmission route are unlikely to be highly effective.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks-Pollock, Ellen -- Roberts, Gareth O -- Keeling, Matt J -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jul 10;511(7508):228-31. doi: 10.1038/nature13529. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK [2] WIDER Centre, Mathematics Institute and School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. ; Department of Statistics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. ; WIDER Centre, Mathematics Institute and School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008532" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; *Computer Simulation ; Great Britain ; Health Policy ; Mycobacterium bovis/physiology ; Risk Factors ; Tuberculosis, Bovine/*prevention & control/*transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The microgravity environment of an orbiting vehicle permits crystal growth experiments in the presence of greatly reduced buoyant convection in the liquid melt. Crystals grown in ground-based laboratories do not achieve their potential properties because of dopant variations caused by flow in the melt. The floating zone crystal growing system is widely used to produce crystals of silicon and other materials. However, in this system the temperature gradient on the free sidewall surface of the melt is the source of a thermocapillary flow which does not disappear in the low-gravity environment. The idea of using a uniform rotation of the floating zone system to confine the thermocapillary flow to the melt sidewall leaving the interior of the melt passive is examined. A cylinder of fluid with an axial temperature gradient imposed on the cylindrical sidewall is considered. A half zone and the linearized, axisymmetric flow in the absence of crystal growth is examined. Rotation is found to confine the linear thermocapillary flow. A simplified model is extended to a full zone and both linear and nonlinear thermocapillary flows are studied theoretically. Analytical and numerical methods are used for the linear flows and numerical methods for the nonlinear flows. It was found that the linear flows in the full zone have more complicated and thicker boundary layer structures than in the half zone, and that these flows are also confined by the rotation. However, for the simplified model considered and for realistic values for silicon, the thermocapillary flow is not linear. The fully nonlinear flow is strong and unsteady (a weak oscillation is present) and it penetrates the interior. Some non-rotating flow results are also presented. Since silicon as a large value of thermal conductivity, one would expect the temperature fields to be determined by conduction alone. This is true for the linear and weakly nonlinear flows, but for the stronger nonlinear flow the results show that temperature advection is also important. Uniform rotation may still be a means of confining the flow and the results obtained define the procedure to be used to examine this hypothesis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-2576 , NAS 1.60:2576
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-2323 , NAS 1.60:2323
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...