ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roca-Marti, M., Benitez-Nelson, C. R., Umhau, B. P., Wyatt, A. M., Clevenger, S. J., Pike, S., Horner, T. J., Estapa, M. L., Resplandy, L., & Buesseler, K. O. Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00166, https://doi.org/10.1525/elementa.2020.00166.
    Description: Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and 〉51 μm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration as part of the EXport Processes in the Ocean from RemoTe Sensing program awards 80NSSC17K0555 and 80NSSC17K0662. They also acknowledge the funding from the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for MRM and KOB, the National Science Foundation Graduate Research Fellowship Program for AMW, and the Ocean Frontier Institute for MRM.
    Keywords: Biological pump ; Bioelements ; Particulate fluxes ; Transfer efficiency ; Size-fractionated particles ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Benitez-Nelson, C. R., Roca-Marti, M., Wyatt, A. M., Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S., & Umhau, B. P. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport processes in the ocean from RemoTe sensing field campaign. Elementa: Science of the Anthropocene, 8(1), (2020): 030, https://doi.org/10.1525/elementa.030.
    Description: The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (〉51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program awards 80NSSC17K0555 and 80NSSC17K0662; the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for KOB and MRM, and the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) for funding and support of AW.
    Keywords: Thorium-234 ; Ocean Station Papa ; Particulate organic carbon flux ; EXPORTS ; Biological carbon pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...