ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DOCUMENTATION AND INFORMATION SCIENCE  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2013-08-31
    Description: Remotely sensed data are affected by system (sensor and platform), and scene related effects. For quantitative investigations the spectral, radiometric characteristics of the system and scene have to be known. The relevant effects and their possible influence on an image have to be specifically determined for every remote sensing system and adequate description parameters need to be updated and reported on a regular basis as they are carried out, e.g., for the AVIRIS system. It is evident that the strength of the influence of similar effects in very dependent on the accessibility of auxiliary information about such sensor systems. Degradation in a spaceborne system can normally be just reported and cannot be corrected. In contrast, an airborne sensor can be evaluated, maintained and improved periodically. Such maintenance efforts are particularly important because airborne systems are exposed to extreme and changing environments. These include tens of takeoffs and landing each year as well as extreme changes in temperature and humidity on the tarmac and in flight. For the AVIRIS system there are environmental stresses such as changes in temperature, air pressure, humidity, vibration of the platform or scene-related reasons like atmospheric conditions, and topography. The information contained in the auxiliary files included with the AVIRIS data can be used to assess these effects and compensate for them. In addition the spectral, radiometer and geometric calibration data contained in the auxiliary file are required for quantitative analysis of the data. The paper describes tools to access the auxiliary information that characterizes the AVIRIS system. These tools allow the examination of parameters that may impact the quality of the measured AVIRIS image. An example of the use of this auxiliary data was carried out with regard to a parametric geocoding approach. Emphasis is placed on the reported auxiliary information that describes the geometric character of the AVIRIS data in 1991. Results are presented using data from the AVIRIS flight #910705, run 6 and 7 of the NASA MAC Europe 1991 campaign in a test site in Central Switzerland.
    Keywords: DOCUMENTATION AND INFORMATION SCIENCE
    Type: Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; p 121-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.
    Keywords: DOCUMENTATION AND INFORMATION SCIENCE
    Type: Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; p 127-132
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...