ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-26
    Description: The signal recognition particle (SRP), a protein-RNA complex conserved in all three kingdoms of life, recognizes and transports specific proteins to cellular membranes for insertion or secretion. We describe here the 1.8 angstrom crystal structure of the universal core of the SRP, revealing protein recognition of a distorted RNA minor groove. Nucleotide analog interference mapping demonstrates the biological importance of observed interactions, and genetic results show that this core is functional in vivo. The structure explains why the conserved residues in the protein and RNA are required for SRP assembly and defines a signal sequence recognition surface composed of both protein and RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Batey, R T -- Rambo, R P -- Lucast, L -- Rha, B -- Doudna, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1232-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678824" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Base Pairing ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Guanosine Triphosphate/metabolism ; Hydrogen Bonding ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Potassium/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/*chemistry/genetics/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Transformation, Bacterial ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-28
    Description: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-26
    Description: The phytohormone abscisic acid (ABA) acts in seed dormancy, plant development, drought tolerance, and adaptive responses to environmental stresses. Structural mechanisms mediating ABA receptor recognition and signaling remain unknown but are essential for understanding and manipulating abiotic stress resistance. Here, we report structures of pyrabactin resistance 1 (PYR1), a prototypical PYR/PYR1-like (PYL)/regulatory component of ABA receptor (RCAR) protein that functions in early ABA signaling. The crystallographic structure reveals an alpha/beta helix-grip fold and homodimeric assembly, verified in vivo by coimmunoprecipitation. ABA binding within a large internal cavity switches structural motifs distinguishing ABA-free "open-lid" from ABA-bound "closed-lid" conformations. Small-angle x-ray scattering suggests that ABA signals by converting PYR1 to a more compact, symmetric closed-lid dimer. Site-directed PYR1 mutants designed to disrupt hormone binding lose ABA-triggered interactions with type 2C protein phosphatase partners in planta.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Noriyuki -- Hitomi, Kenichi -- Arvai, Andrew S -- Rambo, Robert P -- Hitomi, Chiharu -- Cutler, Sean R -- Schroeder, Julian I -- Getzoff, Elizabeth D -- ES010337/ES/NIEHS NIH HHS/ -- GM060396/GM/NIGMS NIH HHS/ -- GM37684/GM/NIGMS NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- P42 ES010337-10S20008/ES/NIEHS NIH HHS/ -- R01 GM060396/GM/NIGMS NIH HHS/ -- R01 GM060396-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1373-9. doi: 10.1126/science.1181829. Epub 2009 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, Cell and Developmental Biology Section, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933100" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Immunoprecipitation ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry/metabolism ; Phosphoprotein Phosphatases/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; Scattering, Small Angle ; *Signal Transduction ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...